
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{C}\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2024 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 53, \mathrm{N}\mathrm{o}. 4, \mathrm{p}\mathrm{p}. 884--968

TWO VARIABLE LOGIC WITH ULTIMATELY PERIODIC
COUNTING\ast 

MICHAEL BENEDIKT\dagger , EGOR V. KOSTYLEV\ddagger , AND TONY TAN\S 

Abstract. We consider the extension of \sansF \sansO 2 with quantifiers that state that the number of
elements where a formula holds should belong to a given ultimately periodic set. We show that both
satisfiability and finite satisfiability of the logic are decidable. We also show that the spectrum of
any sentence, i.e., the set of the sizes of its finite models, is definable in Presburger arithmetic. In the
process we present several refinements to the ``biregular graph method."" In this method, decidability
issues concerning two-variable logics are reduced to questions about Presburger definability of integer
vectors associated with partitioned graphs, where nodes in a partition satisfy certain constraints on
their in- and out-degrees.
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1. Introduction. In the search for expressive logics with decidable satisfiability
problem, two-variable logic, denoted here as \sansF \sansO 2, is one yardstick. This logic is
expressive enough to subsume basic modal logic and many description logics, while
satisfiability and finite satisfiability for this logic coincide, and both are decidable
[31, 22, 14]. However, \sansF \sansO 2 lacks the ability to count. Two-variable logic with counting,
\sansC 2, is a decidable extension of \sansF \sansO 2 that adds counting quantifiers. In \sansC 2 one can
write, for example, formulas \exists 5x P (x) and \forall x\exists \geqslant 5y E(x, y) which, respectively, express
that there are exactly 5 elements in unary relation P , and that every element in a
graph has at least 5 adjacent edges. Satisfiability and finite satisfiability do not
coincide for \sansC 2, but both are decidable [15, 23]. In [23] the problems were shown to
be NEXPTIME-complete under a unary encoding of numbers, and this was extended
to binary encoding in [25]. However, the numerical capabilities of \sansC 2 are quite limited.
For example, one cannot express that the number of outgoing edges of each element
in the graph is even.

A natural extension is to combine \sansF \sansO 2 with Presburger arithmetic where one is
allowed to define collections of tuples of integers from addition and equality using
Boolean operators and quantifiers. The collections of k-tuples that one can define in
this way are the semilinear sets, and the collections of integers (when k= 1) definable
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TWO VARIABLE LOGIC WITH U.P. COUNTING 885

are the ultimately periodic sets. It is natural to consider the addition of Presburger
quantification to fragments of two-variable logic; this is in the spirit of works such as
[4, 2]. For every definable set \phi (x, y) and every ultimately periodic set S, one has a
formula \exists Sy \phi (x, y) that holds at x when the number of y such that \phi (x, y) is in S.
We let \sansF \sansO 2

Pres denote the logic that adds this construct to \sansF \sansO 2.
On the one hand, the corresponding quantification over general k-tuples (allowing

semilinear rather than only ultimately periodic sets) easily leads to undecidability
[16, 3]. On the other hand, adding this quantification to modal logic has been shown
to preserve decidability [1, 10]. Related one-variable fragments in which we have only
a unary relational vocabulary and the main quantification is \exists Sx \phi (x) are known to
be decidable (see, e.g., [2]), and their decidability is the basis for a number of software
tools focusing on integration of relational languages with Presburger arithmetic [21].
The decidability of full \sansF \sansO 2

Pres is, to the best of our knowledge, open. There are
a number of other extensions of \sansC 2 that have been shown decidable; for example,
it has been shown that one can allow a distinguished equivalence relation [29] or a
forest-structured relation [9, 7]. \sansF \sansO 2

Pres is easily seen to be orthogonal to these other
extensions. For example, equivalence relations and forest-structure are not expressible
in \sansF \sansO 2

Pres, whereas modulo counting is not expressible in the logics of [29, 9, 7].
In this paper we show that both satisfiability and finite satisfiability of \sansF \sansO 2

Pres are
decidable. Our result uses a method based on analyzing biregular graph constraints,
introduced for analyzing \sansC 2 in [19]. In this analysis we search for the existence of
graphs equipped with a partition of vertices based on constraints on the out- and
in-degree. Such a partitioned graph can be characterized by the cardinalities of each
partition component, and the key step in showing these decidability results is to prove
that the set of tuples of integers representing valid sizes of partition components is de-
finable by a formula in Presburger arithmetic. From this ``biregular graph constraint
Presburger definability"" result, one can reduce satisfiability in the logic to satisfia-
bility of a Presburger formula, and from there infer decidability using known results
on Presburger arithmetic. We will also use this method to get information on the
spectrum of a \sansF \sansO 2

Pres sentence: the set of sizes of models of the sentence. We use the
method to conclude that this set is definable in Presburger arithmetic, a result that
had been demonstrated for \sansC 2 in [19].

Organization. Section 2 provides background on two-variable logic and Pres-
burger arithmetic. Section 3 introduces our major results on the logic, and gives
a reduction of these logic-based problems to results concerning the analysis of con-
strained biregular graphs. Section 4 gives some of the details behind the core lemmas
concerning Presburger definability of solutions to biregular graph problems that un-
derlie the proof, and provides a full proof in the case where there is only a single kind
of edge in the graph. We refer to this as the ``1-color case."" Section 5 generalizes to
give a proof in the case of an unbounded number of edge colors, but with an extra
restriction on the matrices that specify the graph constraints. The restriction is that
they are ``simple matrices."" Section 6 extends the analysis in section 5 to the complete
graph cases---but still with the restriction on simple matrices. Section 7 shows how
to reduce the general case to the simple case. Section 8 provides complexity upper
bounds for all problems considered in this paper. Section 9 gives an application of
the graph analysis result to the spectrum problem. After a discussion of related work
in section 10, the paper closes with conclusions and future directions in section 11.
Some proofs that are not required in order to follow the main line of argument in the
paper are deferred to the appendix. In addition, to make the main line of argument
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886 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

clearer, we consider only the finite graph case in the body of the paper, which already
implies decidability of the finite satisfiability of \sansF \sansO 2

Pres. The general case is deferred
to the appendix.

2. Preliminaries. Let \BbbN = \{ 0,1,2, . . .\} and let \BbbN \infty =\BbbN \cup \{ \infty \} .

Linear and ultimately periodic sets. A set of the form \{ a + ip | i \in \BbbN \} ,
for some a, p \in \BbbN , is a linear set. We will denote such a set by a+p, where a and
p are called the offset and period of the set, respectively. Note that, by definition,
a+0 = \{ a\} , which is a linear set. For convenience, we define \emptyset and \{ \infty \} (which may
be written as \infty +p) to also be linear sets. An ultimately periodic set (u.p.s.) S is a
finite union of linear sets.

In this paper we represent a u.p.s. S = \{ c1\} \cup \cdot \cdot \cdot \cup \{ cm\} \cup a+p1

1 \cup \cdot \cdot \cdot \cup a+pn
n , where

p1, . . . , pn \not = 0, as a ``finite set"" \{ c1, . . . , cm, a+p1

1 , . . . , a+pn
n \} . In such a representation

the offsets in S are c1, . . . , cm, a1, . . . , an and the (nonzero) periods are p1, . . . , pn. For
an integer a, we write a\in S, if a is in S in the standard sense. Abusing notation, we
write a+p \in S, if a+ ip \in S for every i \in \BbbN . We also note that the set of u.p.s.'s is
closed under complement, union, and intersection [13].

Two-variable logic with ultimately periodic counting quantifiers. An
atomic formula is one of the following:

\bullet an atom R(\vec{}u), where R is a predicate, and \vec{}u is a tuple of variables/constants
of appropriate size;

\bullet an equality u= u\prime with u and u\prime variables/constants;
\bullet one of the formulas \top and \bot denoting the True and False values.

The logic \sansF \sansO 2
Pres is the class of formulas using only variables x and y, built up

from atomic formulas and equalities using the usual Boolean connectives and also
ultimately periodic counting quantification, which is of the form \exists Sx \phi , where S is a
u.p.s. and \phi is an \sansF \sansO 2

Pres formula. One special case is where S is a singleton \{ a\} with
a \in \BbbN \infty , which we write \exists ax \phi ; in the case of a \in \BbbN , these are counting quantifiers.
The semantics of \sansF \sansO 2

Pres is defined as usual except that, for every a\in \BbbN , \exists ax \phi holds
when there are exactly a number of x's such that \phi holds, \exists \infty x \phi holds when there
are infinitely many x's such that \phi holds, and \exists Sx \phi holds when there is some a \in S
such that \exists ax \phi holds.

Formulas in \sansF \sansO 2
Pres still use only two variables. So just as in \sansF \sansO 2 they can be

normalized. If they use atomic predicates with arity 3 or above, they can be rewritten
into an equisatisfiable formula that uses only unary and binary predicates. See [14,
sect. 3] or [30] for the details of such a rewriting. In addition, each constant c can
be represented with a fresh unary predicate Uc that contains exactly one element.
For constants c1, c2, an atomic predicate x= c1 can then be rewritten as Uc1(x), and
predicate c1 = c2 can be rewritten as \forall x Uc1(x) \updownarrow Uc2(x). Thus, in this paper we
may assume that \sansF \sansO 2

Pres formulas use only unary and binary predicates, and do not
use constants.

Note that when S is 0+1 \cup \{ \infty \} = \BbbN \infty , \exists Sx \phi is equivalent to \top . When S is
0+1 =\BbbN , \exists Sx \phi semantically means that there are finitely many x such that \phi holds.
We also observe that, for every formula \phi , \exists \emptyset x \phi is equivalent to \bot , \exists 0x \phi is equivalent
to \forall x \neg \phi , and \neg \exists Sx \phi is equivalent to \exists \BbbN \infty  - Sx \phi . We remark that \BbbN \infty  - S is a u.p.s.,
whenever S is a u.p.s.

For example, we can state in \sansF \sansO 2
Pres that a graph is undirected and every node in

a graph has even degree (i.e., the graph is Eulerian in the sense that every connected
component has Eulerian cycle):
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TWO VARIABLE LOGIC WITH U.P. COUNTING 887

\forall x\forall y E(x, y)\updownarrow E(y,x) \wedge \forall x\exists Sy E(x, y)\wedge x \not = y, where S = 2+2.

Clearly \sansF \sansO 2
Pres extends \sansC 2, the fragment of the logic where only counting quantifiers

are used, and \sansF \sansO 2, the fragment where only the classical quantifier \exists x is allowed
(which is equivalent to \exists Sx for S = \{ 1+1,\infty \} ).

Presburger arithmetic. An existential Presburger formula is a first-order logic
formula of the form \exists x1 \cdot \cdot \cdot \exists xk \phi , where \phi is a quantifier-free formula over the sig-
nature including constants 0,1, a binary function symbol +, and a binary relation
\leqslant . Such a formula is a sentence if it has no free variables. The notion of a sentence
holding in a structure interpreting the function, relation, and constants is defined in
the usual way. The structure \scrN = (\BbbN ,+,\leqslant ,0,1), is defined by interpreting +,\leqslant ,0,1
in the standard way. We will focus not on this structure, but on \scrN \infty = (\BbbN \infty ,+,\leqslant ,0,1)
which is the same as \scrN , except that there is an element \infty , with a +\infty = \infty and
a \leqslant \infty for each a \in \BbbN \infty . Note that in \scrN \infty there is a unique element n such that
n+ 1= n, namely, \infty . We will thus abuse notation in the followingby writing t=\infty ,
where t is a term, as syntactic sugar for t= t+1. Since \scrN is quantifier-free definable
in \scrN \infty , satisfaction of a formula in finite integers can still be expressed when working
over \scrN \infty .

It is known that the problem of checking whether an existential Presburger sen-
tence holds in\scrN is decidable and is NP-complete [24]. Further, the analogous problem
for \scrN \infty can easily be reduced to that for \scrN . Indeed, we can first guess which variables
are mapped to \infty and then which atoms should be true. Then we can check whether
each guessed atomic truth value is consistent with other guesses, in the sense that no
two contradicting atoms are guessed to be both true or false at the same time. We can
determine additional variables which must be infinite based on this choice. Finally we
can restrict ourselves to atoms that do not involve variables guessed to be infinite, and
check that the conjunction is satisfiable for \scrN . This gives us the following theorem.

Theorem 2.1. The problems of checking whether an existential Presburger sen-
tence holds in \scrN \infty in NP.

3. From Analysis of Constrained Regular Graph Problems to Decid-
ability of FO2

Pres. In this section we prove decidability of \sansF \sansO 2
Pres satisfiability, with

the decidability following from a result on Presburger definability of collection of inte-
gers that characterizes graphs satisfying a set of degree constraints. These definability
results will be proven later in the paper. Our decision procedure is based on the key
notion of biregular graphs. Note that whenever we talk about graphs or digraphs
(i.e., directed graphs), by default we allow both finite and infinite sets of vertices and
edges.

3.1. Biregular graphs and constrained biregular graph problems. We
fix an integer p \geqslant 0. Let \BbbN \infty ,+p denote the set \BbbN \infty \cup \{ a+p | a \in \BbbN \infty \} . For integers
t,m\geqslant 1, let \BbbN t\times m

\infty ,+p denote the set of matrices with t rows and m columns where each
entry is an element of \BbbN \infty ,+p. For an integer k\geqslant 1, let [k] denote the set \{ 1,2, . . . , k\} .

A t-color bipartite (undirected) graph is G = (U,V,E1, . . . ,Et), where U and V
are sets of vertices, and E1, . . . ,Et are pairwise disjoint sets of edges between U and
V---that is, pairs (u, v) \in U \times V . Edges in Ei are called Ei-edges, and we often refer
to an index from 1 to t---the type of an edge---as a color. For a vertex u\in U \cup V , the
Ei-degree of u is the number of Ei-edges adjacent to u. The degree of u is the sum
of the Ei-degrees for i = 1, . . . , t: we use this primarily for brevity when the there is
only a single edge relation. In the context of multiple relations, we sometimes refer
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888 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

to this as the total degree to emphasize that all relations are considered. We say that
G is complete if U \times V =

\bigcup t
i=1Ei.

For two matrices A\in \BbbN t\times m
\infty ,+p and B \in \BbbN t\times n

\infty ,+p, graph G is an A| B-biregular graph,
if there exist a partition1 U = U1 \uplus \cdot \cdot \cdot \uplus Um and a partition V = V1 \uplus \cdot \cdot \cdot \uplus Vn such
that for every i \in [t], for every k \in [m], and for every \ell \in [n], the Ei-degree of every
vertex in Uk is Ai,k (i.e., the element of A in the ith row and kth column) and the
Ei-degree of every vertex in V\ell is Bi,\ell ; note here that, by abuse of notation, when
we say that a nonnegative integer z is a linear set a+p, we mean that z \in a+p. For
each such partition, we say that G has size \=M | \=N , where \=M = (| U1| , . . . , | Um| ) and
\=N = (| V1| , . . . , | Vn| ). The partitions U =U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn are called
a witness partition for A| B-biregularity. We should remark that some Ui and Vi are
allowed to be empty. The matrices A and B are called (t-color) degree matrices and
the vectors \=M and \=N are called size vectors. For convenience, we treat the empty
graph (i.e., the graph with no vertex) as a complete A| B-biregular graph for any
degree matrices A and B.

The above definitions can be easily adapted for the case of directed graphs that
are not necessarily bipartite. A t-color directed graph (or digraph) is a tuple G =
(V,E1, . . . ,Et), where E1, . . . ,Et are pairwise disjoint sets of directed edges on a set
V of vertices such that (i) there are no self-loops---that is, (v, v) /\in Ei for every v \in V
and every Ei, and (ii) if (u, v) \in Ei, then (v,u) /\in Ej for every Ej . As before, edges
in Ei are called Ei-edges. The Ei-indegree and -outdegree of a vertex u is defined
as the number of incoming and outgoing Ei-edges incident to u. We say that G is
complete,if, for every u, v \in V and u \not = v, either (u, v) or (v,u) is an Ei-edge, for some
Ei. We consider the empty digraph and the digraph with only one vertex without
any edge as complete digraphs.

We say that G is an A| B-regular digraph, for A,B \in \BbbN t\times m
\infty ,+p, if there exists a

partition V = V1 \uplus \cdot \cdot \cdot \uplus Vn such that, for every i \in [t] and for every k \in [m], the
Ei-outdegree and -indegree of every vertex in Vk is Ai,k and Bi,k, respectively. We
say that G has size (| V1| , . . . , | Vm| ), and call V = V1 \uplus \cdot \cdot \cdot \uplus Vm a witness partition for
A| B-regularity of G. When the entries in A and B are all 0 or 0+p, we regard the
graph with only one vertex to be a complete A| B-regular digraph.

In this work we will be interested in computational problems concerning the pos-
sible sizes of an A| B-biregular graph or -regular digraph, and the possible sizes of
a complete A| B-biregular graph or -regular digraph. Biregular one-color graphs are
arguably quite natural, independently of any connection with satisfiability of a logic.
Completeness, as well as disjointness of edges for different colors, is more motivated
specifically by our application to logic. Intuitively, the different edge colors in a bireg-
ular graph represent the possible relationships between two elements in a structure.
One color might represent a binary relationship, and another might represent its nega-
tion. Since every two elements have some relationship, we want all pairs to be colored
by exactly one edge color. This will be formalized in subsection 3.2 below.

We briefly consider the (finite) membership problem: given size vectors \=M, \=N
along with matrices A and B, all without \infty , decide if there is an A| B-biregular
graph G with size \=M | \=N . The problem is clearly in NP if the entries in \=M and \=N are
in unary, since we can guess G and check that it is A| B-biregular with size \=M | \=N .

The degree sequence for a (1-color) bipartite graph (U,V,E) with k vertices in U
and k\prime vertices in V , is the pair of sequences d1, . . . , dk and d\prime 1, . . . , d

\prime 
k\prime where d1, . . . , dk

1As usual, we write U =U1 \uplus \cdot \cdot \cdot \uplus Um to denote the partition of U into the sets U1, . . . ,Um, i.e.,
when U =U1 \cup \cdot \cdot \cdot \cup Um for pairwise disjoint sets U1, . . . ,Um.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 889

enumerates the degrees of elements in U in nondecreasing order and d\prime 1, . . . , d
\prime 
k\prime enu-

merates the degrees of elements of V in nondecreasing order.
It follows from the Gale--Reyser theorem (the main theorem in [20]) that one can

determine in polynomial time whether a pair of sequences is the degree sequence of a
bipartite graph. From this we derive the following.

Proposition 3.1. In the case of 1-color degree matrices with only entries from
\BbbN , coded in unary, the membership problem is in PTIME.

Proof. The algorithm will first generate a pair of sequences that will be a degree
sequence of any A| B-biregular graph with sizes \=M | \=N . We can do this in linear time:
if an entry with fixed degree d is to have size m, the degree sequences will contain
a contiguous subsequence consisting of m d's. We then apply Gale--Reyser to this
sequence.

While we will not provide a detailed analysis of the complexity of the membership
problem, we will show that, when fixing A and B, we can succinctly describe---and
hence efficiently compute---the size vectors of partitioned graphs for which member-
ship holds. This will be a consequence of the following theorem.

Theorem 3.2. For all degree matrices A \in \BbbN t\times m
\infty ,+p and B \in \BbbN t\times n

\infty ,+p, there is an
(effectively computable) existential Presburger formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) such that, for
every pair of size vectors \=M \in \BbbN m

\infty and \=N \in \BbbN n
\infty , the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B( \=M, \=N) holds

in \scrN \infty if and only if there is a complete A| B-biregular graph with size \=M | \=N .

We have an analogous theorem for digraphs.

Theorem 3.3. For every pair of degree matrices A \in \BbbN t\times m
\infty ,+p and B \in \BbbN t\times m

\infty ,+p,
there is an (effectively computable) existential Presburger formula \sansc -\sansr \sanse \sansg A| B(\=x) such
that for every size vector \=M \in \BbbN m

\infty , the formula \sansc -\sansr \sanse \sansg A| B( \=M) holds in \scrN \infty if and only
if there is a complete A| B-regular digraph with size \=M .

The proofs of these two theorems are given later in sections 4--7, beginning with an
overview of the ideas via an extremely special case (the 1-color case) in section 4. An
immediate consequence of these results is the decidability of graph analysis problems.

Corollary 3.4. We can decide, given matrices A \in \BbbN t\times m
\infty ,+p and B \in \BbbN t\times n

\infty ,+p,
whether there exists a complete A| B-biregular graph. The analogous result holds for
digraphs. Moreover, the decision procedure runs in nondeterministic exponential time
in the size of A and B where the coefficients are written in binary.

Proof. By Theorems 3.2 and 3.3, we can reduce the graph existence problems to
checking whether the existential closures of \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) and \sansc -\sansr \sanse \sansg A| B(\=x) hold in
\scrN \infty . In turn, these problems are decidable by Theorem 2.1. Moreover, the upper
bound for both cases holds by Lemma 8.1, which we prove in section 8.

Remark 3.5. Theorems 3.2 and 3.3, as well as Corollary 3.4, can be easily adjusted
in the case where we are interested only in finite sizes, i.e., when \=M \in \BbbN m and \=N \in \BbbN n,
by replacing every atom x=\infty in the formulas with the False value \bot and requiring
them to hold in \scrN , instead of \scrN \infty . Alternatively, we can also state inside the formulas
that none of the variables in \=x and \=y are equal to \infty .

The rest of this section will be devoted to proving the decidability result concern-
ing our logic, making use of these theorems.
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890 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

3.2. Reducing satisfiability in the logic to biregular graph problems.
We are now ready to present the decidability result for two-variable logic with ulti-
mately periodic quantifiers.

Theorem 3.6. For every \sansF \sansO 2
Pres sentence \phi , (i) there is an (effectively comput-

able) existential Presburger sentence \sansP \sansR \sansE \sansS \infty \phi such that \phi has a model if and only if
\sansP \sansR \sansE \sansS \infty \phi holds in \scrN \infty and (ii) there is an (effectively computable) existential Presburger
sentence \sansP \sansR \sansE \sansS \phi such that \phi has a finite model if and only if \sansP \sansR \sansE \sansS \phi holds in \scrN .

From the decision procedure for existential Presburger formulas (Theorem 2.1)
mentioned in section 2, we will immediately obtain the following corollary.

Corollary 3.7. Both satisfiability and finite satisfiability for \sansF \sansO 2
Pres are

decidable.

We prove Theorem 3.6 using Theorems 3.2 and 3.3. We start by observing that
satisfiability for an \sansF \sansO 2

Pres sentence---as well as spectrum analysis, to be defined for-
mally in section 9---can be converted effectively into the same question for a sentence
in a variant of Scott normal form:

\phi := \forall x\forall y \alpha (x, y) \wedge 
k\bigwedge 

i=1

\forall x\exists Siy \beta i(x, y)\wedge x \not = y,(3.1)

where \alpha (x, y) is a quantifier-free formula, each \beta i(x, y) is an atomic formula, and each
Si is a u.p.s. More precisely, every \sansF \sansO 2

Pres sentence can be converted effectively into
a sentence in the form (3.1) such that they are equisatisfiable and have the same
spectrum. The proof, which is fairly standard, can be found in the appendix. By
taking the least common multiple, we may assume that all the nonzero periods in all
Si are the same. For example, if S1 = \{ 0+2\} and S2 = \{ 0+3\} , they can be rewritten as
S1 = \{ 0+6,2+6,4+6\} and S2 = \{ 0+6,3+6\} . Here it is worth mentioning that when we
write \alpha (x, y) and \beta (x, y), we implicitly assume that both x and y occur. For the rest
of this section, we fix an \sansF \sansO 2

Pres sentence \phi in the form (3.1), with all Si as described
above. The signature of structures we consider will be the signature of \phi .

We recall some standard terminology. A 1-type is a maximally consistent set of
atomic and negated atomic formulas using only variable x, including atomic formulas
such as r(x,x) or \neg r(x,x). Each 1-type can be identified with the quantifier-free
formula formed as the conjunction of its constituent formulas. Thus, we say that an
element u in a structure \scrA has 1-type \pi , if \pi holds on the element u. For a structure
\scrA with domain A, we let A\pi denote the set of elements in \scrA with 1-type \pi . Clearly
A is partitioned into the sets A\pi with \pi ranging over 1-types. Similarly, a 2-type is
a maximally consistent set of binary atoms and negations of atoms containing x \not = y,
where each atom or its negation uses two variables x and y.2 The notion of a pair
of elements (u, v) in a structure \scrA having 2-type \mu is defined as for 1-types. We let
\Pi = \{ \pi 1, \pi 2, . . . , \pi n\} and \scrE = \{ \mu 1, . . . , \mu t\} denote the sets of all 1-types and 2-types
(over the same signature as \phi ), respectively.

We can now explain the connection between satisfiability in the logic and graph
analysis. This will involve associating with a model \scrA for a formula \phi a collection of
graphs and digraphs, along with partitions that witnesses biregularity of the graphs
and digraphs. The following crucial definition explains the first aspect, how to go
from a structure \scrA to a collection of graphs and digraphs.

2Under standard definitions, such as the ones in [14, 25], a 2-type may contain unary atoms or
negations of unary atoms involving variable x or y. In this paper we use a different definition and
require that each atom and the negation of an atom in a 2-type explicitly mentions both x and y.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 891

Definition 3.8. Let \scrA be a structure. A graph representation of \scrA is a complete
t-color digraph G\scrA = (V,E1, . . . ,Et), where the vertices in G\scrA are the elements in the
domain of \scrA and for each pair of elements (u, v), where u \not = v, we put an arbitrary
orientation between them: either from u to v or from v to u. For each i\in [t], the set
of edges Ei is the set of pairs (u, v) where the orientation is from u to v and the 2-type
of (u, v) is \mu i. We often denote the graph representation G\scrA as G\scrA = (V,\mu 1, . . . , \mu t),
and we call a pair (u, v) a \mu i-edge, if its 2-type is \mu i.

For a graph representation G\scrA of a structure \scrA , we will consider two kinds of
subgraphs of G\scrA . The first is the subgraph of G\scrA induced by the set A\pi for a 1-type
\pi , denoted by G\scrA ,\pi . The second is the bipartite restriction of G\scrA on the vertices in
A\pi and A\pi \prime , for different 1-types \pi ,\pi \prime , denoted by G\scrA ,\pi ,\pi \prime . That is, G\scrA ,\pi ,\pi \prime is the
complete (directed) bipartite graph, where A\pi is the set of vertices on the left-hand
side, A\pi \prime is the set of vertices on the right-hand side and the edges are between the
vertices in A\pi and the vertices in A\pi \prime . Note that in G\scrA ,\pi ,\pi \prime the edges are oriented.
Some edges are oriented from the vertices in A\pi to the vertices in A\pi \prime , and some
from the vertices in A\pi \prime to the vertices in A\pi . It is complete since for every pair
(u, v)\in A\pi \times A\pi \prime , either (u, v) or (v,u) is a \mu i-edge, for some \mu i.

See Figure 1 for an illustration of a graph representation of a structure \scrA with
domain \{ u1, u2, u3, v1, v2,w\} . The 1-types are \pi 1, \pi 2, \pi 3, and 2-types are \mu 1, \mu 2, \mu 3, \mu 4.
In the graph representation the edge between u1 and v1 is oriented from u1 to v1 and
the 2-type of (u1, v1) is \mu 1.

\mu 2

\mu 2

u1

u2

u3

A\pi 1

v1

v2

A\pi 2

w

A\pi 3

\mu 3

\mu 3
\mu 3

\mu 4

\mu 3

\mu 2

\mu 1

\mu 1

\mu 2

\mu 1

\mu 4

\mu 4

\mu 4

Fig. 1. Illustration of a graph representation of a structure with 1-types \pi 1, \pi 2, \pi 3. The 2-types
are \mu 1, \mu 2, \mu 3, \mu 4 represented by edges with color black, red, blue, and green, respectively. The vertices
u1, u2, u3 are in A\pi 1 , v1, v2 are in A\pi 2 , and w is in A\pi 3 . Note: color appears only in the online
article.
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892 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Remark 3.9. As we will see later, Theorem 3.3 can be used to characterize the
size of the subgraph G\scrA ,\pi . However, to use Theorem 3.2 to characterize the size of the
subgraph G\scrA ,\pi ,\pi \prime , we need to view G\scrA ,\pi ,\pi \prime as a 2t-color complete undirected bipartite
graph where the first t colors are used to represent the edges that are oriented from
left to right. and the next t colors are used to represent the edges that are oriented
from right to left.

Remark 3.10. It is worth noting that for a structure \scrA , the graph representation
of \scrA is not unique since it depends on the orientation put between the vertices. On the
other hand, a graph representation uniquely defines a structure since the information
about the vertices and the edges in a graph representation, i.e., the 1- and 2-types,
uniquely determines the relations in the structure.

The biregular graph problem which our reduction produces will involve counting
the possible sizes of certain partitions in the vector of graphs G\scrA ,\pi ,\pi \prime and G\scrA ,\pi ,
for every graph representation G\scrA of every structure \scrA | = \phi . We now explain the
partitions we are looking for.

Let g : \{ out, in\} \times \scrE \times \Pi \rightarrow \BbbN \infty ,+p be a function. We will use g to describe the
``behavior"" of elements in a graph representation G\scrA in the following sense. We say
that an element u \in A behaves according to g in a graph representation G\scrA if, for
every \pi \in \Pi and for every \mu \in \scrE ,

\bullet the number of outgoing \mu -edges in the graph G\scrA from u to vertices in A\pi is
g(out, \mu ,\pi );

\bullet the number of incoming \mu -edges in the graph G\scrA to u from vertices in A\pi is
g(in, \mu ,\pi ).

For example, in the graph representation in Figure 1 the element w behaves according
to the following function g1:

\bullet g1(out, \mu 2, \pi 1) = 2, g1(out, \mu 3, \pi 2) = 1, g1(in, \mu 2, \pi 2) = 1, g1(in, \mu 4, \pi 1) = 1;
\bullet g1 maps all the other tuples in \{ out, in\} \times \scrE \times \Pi to 0.

As another example, the element u1 behaves according to the following function g2:
\bullet g2(out, \mu 1, \pi 2) = 1, g2(out, \mu 2, \pi 2) = 1, g2(out, \mu 3, \pi 1) = 2. And g2(out, \mu 4, \pi 3)

= 1;.
\bullet the rest are mapped to 0.

We will call a function g : \{ out, in\} \times \scrE \times \Pi \rightarrow \BbbN \infty ,+p a behavior. The restriction
of g on 1-type \pi is the function g\pi : \{ out, in\} \times \scrE \rightarrow \BbbN \infty ,+p, where g\pi (\kappa ,\mu ) = g(\kappa ,\mu ,\pi )
for every \kappa \in \{ out, in\} and \mu \in \scrE . We call the function g\pi the behavior (function)
towards 1-type \pi .

We are, of course, only interested in 1-types and behaviors that are ``allowed""
by the sentence \phi we are considering. To formalize this, we will use the following
terminology, where \alpha (x, y), \beta i(x, y), and Si are from the fixed \phi .

\bullet A 1-type \pi \in \Pi is compatible (with \phi ) if3 \pi (x) | = \alpha (x,x). Otherwise, we say
that \pi is incompatible. Intuitively, \pi is incompatible means that whenever
\scrA | = \phi , there is no element with 1-type \pi .

\bullet For a 1-type \pi \in \Pi , for a behavior function g : \{ out, in\} \times \scrE \times \Pi \rightarrow \BbbN \infty ,+p, we
say that (\pi , g) is compatible (with \phi ) if, for every \mu \in \scrE and for every \pi \prime \in \Pi ,
If g(out, \mu ,\pi \prime ) \not = 0, then

\pi (x) \wedge \mu (x, y) \wedge \pi \prime (y) | = \alpha (x, y) and \pi (y) \wedge \mu (y,x) \wedge \pi \prime (x) | = \alpha (x, y)

and if g(in, \mu ,\pi \prime ) \not = 0, then

3As usual, we use | = in both \scrA | = \phi (for ``\scrA satisfies \phi "") and \phi 1 | = \phi 2 (for ``\phi 1 implies \phi 2"").
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TWO VARIABLE LOGIC WITH U.P. COUNTING 893

\pi (x) \wedge \mu (y,x) \wedge \pi \prime (y) | = \alpha (x, y) and \pi (y) \wedge \mu (x, y) \wedge \pi \prime (x) | = \alpha (x, y).

Otherwise, we say that (\pi , g) is incompatible. Intuitively, (\pi , g) is incompat-
ible means that whenever \scrA | = \phi , there is no element in A\pi that behaves
according to g in any graph representation G\scrA of \scrA .

\bullet A function g is a good behavior (w.r.t. \phi ) if for every i\in [k]:4\sum 
\mu \ni \beta i(x,y)

\sum 
\pi \in \Pi 

g(out, \mu ,\pi ) +
\sum 

\mu \ni \beta i(y,x)

\sum 
\pi \in \Pi 

g(in, \mu ,\pi ) \in Si.(3.2)

Intuitively, for a vertex u in a graph representationG\scrA that behaves according
to g, the sum

\sum 
\mu \ni \beta i(x,y)

\sum 
\pi \in \Pi g(,out \mu ,\pi ) is the number of outgoing edges

that contains the relation \beta i(x, y) and the sum
\sum 

\mu \ni \beta i(y,x)

\sum 
\pi \in \Pi g(in, \mu ,\pi ) is

the number of incoming edges that contains the relation \beta i(y,x). Their total
sum is the number of elements v such that \scrA , x/u, y/v | = \beta i(x, y). Hence,
when \scrA | = \phi , it must be inside the set Si.

The notion of compatibility will be used to capture the universal part \forall x\forall y\alpha (x, y)
of our formula. The notion of good function will be used to capture the universally-
quantified and Presburger-quantified part:

\bigwedge k
i=1 \forall x\exists ySi\beta i(x, y)\wedge x \not = y.

We observe that, for every structure \scrA | = \phi , for every graph representation G\scrA of
\scrA , each vertex in G\scrA behaves according to a function g where the range is a subset of
\{ 0, . . . , q,0+p, . . . , q+p,\infty \} for q the maximal non-\infty offset in all Si (when seen as finite
sets of linear sets). Indeed, suppose \scrA | = \phi and let G\scrA be its graph representation.
Let u be an element that behaves according to g. Suppose g(out, \mu ,\pi ) = a or a+p

for some a > q, \mu \in \scrE , and \pi \in \Pi . We will show that u also behaves according
to a function g\prime where g\prime is the same function as g except that g\prime (out, \mu ,\pi ) is now
(a - sp)+p, where s is the minimum integer such that a - sp\leqslant q. We consider the case
where g(out, \mu ,\pi ) = a. Suppose \beta i(x, y)\in \mu , where i\in [k]. Let b denote the number of
elements v such that \scrA , x/u, y/v | = \beta i(x, y)\wedge x \not = y. Since u behaves according to g, we
have b\geqslant a and hence b > q. Moreover, b \in Si since \scrA | = \phi . Because b > q there must
be c+p \in Si such that b \in c+p. This means that u also behaves according to g\prime where
g\prime is the same as g except that g\prime (out, \mu ,\pi ) = (a  - sp)+p, where s is the minimum
integer such that a - sp \leqslant q. The cases where g(out, \mu ,\pi ) = a+p or g(in, \mu ,\pi ) = a or
g(in, \mu ,\pi ) = a+p with a> q can be treated in a similar manner.

So we may concentrate on only the good behaviors whose codomain is \{ 0, . . . , q,
0+p, . . . , q+p,\infty \} , where q is the maximal non-\infty offset in all Si. Below we will parti-
tion elements based on their behaviors, always using good behaviors, thus the parti-
tions will be finite.

For \scrA | = \phi , and for a graph representation G\scrA of \scrA , we can partition A =
A\pi 1,g1 \uplus \cdot \cdot \cdot \uplus A\pi n,gm according to the 1-types and good behavior functions: for every
element u\in A, we pick a behavior function gj such that u behaves according to g (in
G\scrA ), and declare that u \in A\pi i,gj where \pi i is the 1-type of u.5 We can then consider
the vector of subgraphs G\scrA ,\pi and G\scrA ,\pi ,\pi \prime of G\scrA . We call this the type-behavior
partitioned graph vector associated with the graph G\scrA . The term ``partitioned"" refers
to the fact that the vertices of G\scrA ,\pi have a natural partition into A\pi ,g for differing
g. Intuitively, to decide whether \phi is satisfiable, we construct a Presburger formula

4Here the operation + on \BbbN \infty ,+p is defined to be the commutative extension of the standard
addition on \BbbN such that a+\infty = a+p +\infty =\infty and a+p + b= a+p + b+p = (a+ b)+p.

5In general, for an element u\in A, there may be several behaviors according to which u behaves;
we partition the domain by picking one such behavior.
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894 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

that captures the sizes of all the subgraphs in the type-behavior partitioned graph
vector associated by the graph G\scrA , for every possible graph representation G\scrA of
every model \scrA | = \phi .

At this point we can expand on the intuition for reducing satisfiability to biregular
graph problems. We will construct a sentence \sansP \sansR \sansE \sansS \phi that ``counts"" the possible
cardinalities of the subgraphs in a type-behavior partitioned graph vector associated
with a graph representation G\scrA for a model \scrA of \phi .

Recall that \Pi = \{ \pi 1, \pi 2, . . . , \pi n\} is the set of all 1-types. Let \scrG = \{ g1, . . . , gm\} be
the set of all behavior functions whose codomain is \{ 0, . . . , q,0+p, . . . , q+p,\infty \} . The
sentence \sansP \sansR \sansE \sansS \phi will be of the form

\sansP \sansR \sansE \sansS \phi := \exists \=X \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X)\wedge \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X)\wedge 

\left(  \bigvee 
i\in [n], j\in [m]

X\pi i,gj \not = 0

\right)  ,(3.3)

where \=X is a vector of variables (X\pi 1,g1 ,X\pi 1,g2 , . . . ,X\pi n,gm). Intuitively, each X\pi i,gj

represents | A\pi i,gj | in some graph representation G. The final conjunct ensures that
the domain is nonempty. By the formula \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X), we capture the consistency of
the nonnegative integers \=X with the first conjunct \forall x\forall y \alpha (x, y) of \phi . By the formula
\sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X), we capture the consistency of the nonnegative integers \=X with the
second conjuncts

\bigwedge k
i=1 \forall x\exists Siy \beta i(x, y) \wedge x \not = y. In \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X) we will consider

the type-behavior partitioned graph vector as the common solution of a set biregular
graph and digraph problems, and make use of the Presburger definability of biregular
graph problems.

Towards defining the formulas \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1 and \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2, we define matrices that
will constrain the partitions.

Mout
\pi :=

\left(   g1(out, \mu 1, \pi ) \cdot \cdot \cdot gm(out, \mu 1, \pi )
...

. . .
...

g1(out, \mu t, \pi ) \cdot \cdot \cdot gm(out, \mu t, \pi )

\right)   
and

M in
\pi :=

\left(   g1(in, \mu 1, \pi ) \cdot \cdot \cdot gm(in, \mu 1, \pi )
...

. . .
...

g1(in, \mu t, \pi ) \cdot \cdot \cdot gm(in, \mu t, \pi )

\right)   .

That is, Mout
\pi contains information about the outgoing edges toward 1-type \pi and

M in
\pi contains information about the incoming edges from 1-type \pi .
Now, we explain how to capture information about the relationship between ele-

ments with distinct 1-types. Define matrices L\pi ,L
rev
\pi \in \BbbN 2t\times m

\infty ,+p,

L\pi :=

\biggl( 
Mout

\pi 

M in
\pi 

\biggr) 
and Lrev

\pi :=

\biggl( 
M in

\pi 

Mout
\pi 

\biggr) 
;(3.4)

that is, in L\pi the first t rows, corresponding to t edge colors, come from Mout
\pi with

the next t rows from M in
\pi . While in Lrev

\pi the first t rows come from M in
\pi , followed by

the t rows from Mout
\pi .

The intended meaning of the matrices is as follows. For every structure \scrA , for
every graph representation G\scrA of \scrA , \scrA | = \phi if and only

\bullet for every 1-type \pi , the subgraph G\scrA ,\pi is a complete Mout
\pi | M in

\pi -regular di-
graph;
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TWO VARIABLE LOGIC WITH U.P. COUNTING 895

\bullet for distinct 1-types \pi ,\pi \prime , the subgraphG\scrA ,\pi ,\pi \prime is a complete L\pi \prime | Lrev
\pi -biregular

graph.
Here the first t rows in L\pi \prime | Lrev

\pi capture the edges in G\scrA ,\pi ,\pi \prime that are oriented
from left to right, whereas the last t rows capture the edges in G\scrA ,\pi ,\pi \prime that
are oriented from right to left.

We are now ready to define the formulas, beginning with \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X). Letting
H be the set of all incompatible pairs (\pi , g), the formula \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X) can be defined
as follows:

\sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X) :=
\bigwedge 

\pi is incompatible, g\in \scrG 

X\pi ,g = 0 \wedge 
\bigwedge 

(\pi ,g)\in H

X\pi ,g = 0

\wedge 
\bigwedge 

g is not a good function, \pi \in \Pi 

X\pi ,g = 0.

We turn to formula \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X). Recall that we enumerated all the 1-types as
\pi 1, . . . , \pi n. We now define \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2, where below each \=X\pi i

is the vector (X\pi i,g1 ,
X\pi i,g2 , . . . ,X\pi i,gm) and each \=X\pi j is defined in the same way:

\sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X)(3.5)

:=
\bigwedge 

1\leqslant i<j\leqslant n

\sansc -\sansb \sansi \sansr \sanse \sansg L\pi j
| L\mathrm{r}\mathrm{e}\mathrm{v}

\pi i
( \=X\pi i ,

\=X\pi j ) \wedge 
\bigwedge 

1\leqslant i\leqslant n

\sansc -\sansr \sanse \sansg M\mathrm{o}\mathrm{u}\mathrm{t}
\pi i

| M \mathrm{i}\mathrm{n}
\pi i
( \=X\pi i).

Observe that formula \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X) is Presburger definable by inspection, while
\sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X) is Presburger definable using Theorems 3.2 and 3.3. Thus, the sentence
\sansP \sansR \sansE \sansS \phi is an existential Presburger sentence. Lemmas 3.11 and 3.12 show that \sansP \sansR \sansE \sansS \phi 
is indeed the sentence required by Theorem 3.6.

Lemma 3.11. For each structure \scrA | = \phi , for every graph representation G\scrA of \scrA ,
there is a partition A=A\pi 1,g1 \uplus \cdot \cdot \cdot \uplus A\pi n,gm such that

\bullet for every \pi i \in \Pi , for every gj \in \scrG , A\pi i,gj contains the elements with 1-type
\pi i and behaves according to gj in the graph representation G\scrA ;

\bullet the subgraphs in the type-behavior partitioned graph vector associated with G\scrA 
are complete regular and biregular graphs in the following sense:
(a) For every \pi i \in \Pi , G\scrA ,\pi i

is a complete Mout
\pi i

| M in
\pi i
-regular digraph with

witness partition A\pi i
=A\pi i,g1 \uplus \cdot \cdot \cdot \uplus A\pi i,gm .

(b) For every \pi i, \pi j \in \Pi , where i \not = j, G\scrA ,\pi i,\pi j
is a complete L\pi j

| Lrev
\pi i

-biregular
graph with witness partition A\pi i =A\pi i,g1 \uplus \cdot \cdot \cdot \uplus A\pi i,gm and A\pi j =A\pi j ,g1 \uplus 
\cdot \cdot \cdot \uplus A\pi j ,gm ;

\bullet \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=N) \wedge \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=N) \wedge 
\bigvee 

i\in [n], j\in [m] | A\pi i,gj | \not = 0 holds in \scrN \infty ,

where \=N = (| A\pi 1,g1 | , . . . , | A\pi n,gm | ).
Proof. Let \scrA | = \phi . We fix a graph representation G\scrA . We partition A into

A\pi 1,g1 \uplus \cdot \cdot \cdot \uplus A\pi n,gm , where for every element u \in A, we pick a behavior function gj
such that u behaves according to g (in G\scrA ), and declare that u \in A\pi i,gj where \pi i is
the 1-type of u. Obviously, the first bullet item holds.

To prove item (a) in the second bullet item, let \pi i \in \Pi . By construction, for
every gk \in \scrG , every element in A\pi i,gk behaves according to gk. Moreover, G\scrA ,\pi i is a
complete digraph. Thus, by the definition of Mout

\pi i
and M in

\pi i
, the subgraph G\scrA ,\pi i is a

completeMout
\pi i

| M in
\pi i
-regular digraph with witness partition A\pi i

=A\pi i,g1 \uplus \cdot \cdot \cdot \uplus A\pi i,gm .
Item (b) in the second bullet item can be proved in a similar manner.

We now prove the third bullet item. Since \scrA contains at least one element, at
least one of the A\pi ,g's is not empty. Hence the last conjunct

\bigvee 
i\in [n], j\in [m] | A\pi i,gj | \not = 0
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896 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

holds. Since \scrA | = \forall x\forall y \alpha (x, y), A\pi i = \emptyset whenever \pi i is incompatible and A\pi i,gj = \emptyset 
whenever (\pi i, gj) is incompatible, the following conjunct holds.\bigwedge 

\pi is incompatible, g\in \scrG 

| A\pi ,g| = 0 \wedge 
\bigwedge 

(\pi ,g)\in H

| A\pi ,g| = 0.

Moreover, since \scrA | =
\bigwedge k

i=1 \forall x\exists Siy \beta i(x, y)\wedge x \not = y, the following conjunct holds:\bigwedge 
g is not a good function, \pi \in \Pi 

| A\pi ,g| = 0.

Thus, \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=N) holds for the assignment. Finally, \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X) holds due to
bullet item 2 and Theorems 3.3 and 3.2.

Next, we prove the converse direction of Lemma 3.11.

Lemma 3.12. For every nonzero vector \=N such that \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=N)\wedge \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=N)
holds in \scrN \infty , there is a structure \scrA | = \phi , a graph representation G\scrA , and a partition
A=A\pi 1,g1 \uplus \cdot \cdot \cdot \uplus A\pi n,gm such that

\bullet \=N = (| A\pi 1,g1 | , . . . , | A\pi n,gm | );
\bullet for every \pi i \in \Pi , for every gj \in \scrG , A\pi i,gj contains the elements with 1-type
\pi i and behaves according to gj in the graph representation G\scrA ;

\bullet the subgraphs in the type-behavior partitioned graph vector associated with
G\scrA are complete regular and biregular graphs in the sense of (a) and (b) in
Lemma 3.11 above.

Proof. Let \=N = (N\pi 1,g1 , . . . ,N\pi n,gm) be a nonzero vector such that \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=N)\wedge 
\sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=N) holds. For each i\in [n], let \=N\pi i

= (N\pi i,g1 , . . . ,N\pi i,gm).
For each (\pi i, gj) \in \Pi \times \scrG , we have a set V\pi i,gj with cardinality N\pi i,gj . We let

V\pi i =
\bigcup 

gj\in \scrG V\pi i,gj for each \pi i \in \Pi . We construct a structure \scrA | = \phi along with a
particular graph representation G\scrA .

\bullet The domain is A=
\bigcup 

\pi i\in \Pi , gj\in \scrG V\pi i,gj .

Note that since \=N is a nonzero vector, at least one V\pi i,gj is not empty and,
therefore, A is not empty.

\bullet For each \pi i \in \Pi and for each element u \in V\pi i
, the predicates that hold on u

are defined such that the 1-type of u is \pi i.
\bullet For each \pi i \in \Pi , we define the 2-types of each pair (u, v) \in V\pi i

\times V\pi i
, where

u \not = v as follows.
Since \sansc -\sansr \sanse \sansg M\mathrm{o}\mathrm{u}\mathrm{t}

\pi i
| M \mathrm{i}\mathrm{n}

\pi i
( \=N\pi i) holds, by Theorem 3.3, there is a completeMout

\pi i
| M in

\pi i
-

regular digraph G\pi i = (V,E1, . . . ,Et) with size \=N\pi i . Note that we can take
the set V\pi i as the domain V of the graph and V = V\pi i,g1 \uplus \cdot \cdot \cdot \uplus V\pi i,gm as the
witness partition since (| V\pi i,g1 | , . . . , | V\pi i,gm | ) = \=N\pi i

by construction. Then,
for every 1\leqslant j \leqslant t, we set the 2-types of the edges in Ej as \mu j . We define the
subgraph G\scrA ,\pi i

as the graph G\pi i
itself.

\bullet For every \pi i, \pi j \in \Pi with i < j, we now define the 2-types of each pair
(u, v)\in V\pi i \times V\pi j .
Since \sansc -\sansb \sansi \sansr \sanse \sansg L\pi j

| L\mathrm{r}\mathrm{e}\mathrm{v}
\pi i

( \=N\pi i
, \=N\pi j

) holds, applying Theorem 3.2, there is a com-

plete L\pi j
| Lrev

\pi i
-biregular graph G\pi i,\pi j

= (V\pi i
, V\pi j

,E1, . . . ,Et,Et+1, . . . ,E2t)
with size \=N\pi i

| \=N\pi j
.

Again, note that we can take V\pi i
and V\pi j

as the set of vertices on the left-
hand side and the right-hand side of the graph G\pi i,\pi j , respectively, and that
V\pi i = V\pi i,g1 \uplus \cdot \cdot \cdot \uplus V\pi i,gm and V\pi j = V\pi j ,g1 \uplus \cdot \cdot \cdot \uplus V\pi j ,gm as the witness
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TWO VARIABLE LOGIC WITH U.P. COUNTING 897

partition of Lpij | Lrev
pii -biregularity since the sizes (| V\pi i,g1 | , . . . , | V\pi i,gm | ) and

(| V\pi j ,g1 | , . . . , | V\pi j ,gm | ) match the vectors \=N\pi i and \=N\pi j by construction. We
set the 2-types of each pair (u, v)\in V\pi i

\times V\pi j
as follows.

-- If (u, v) \in Eh, for some 1 \leqslant h \leqslant t, then we set the 2-type of (u, v) to be
\mu h.

-- If (u, v) \in Eh, for some t+ 1\leqslant h\leqslant 2t, then we set the 2-type of (v,u) to
be \mu h.

We define the subgraph G\scrA ,\pi i,\pi j = (V\pi i , V\pi j ,E
\prime 
1, . . . ,E

\prime 
t), where for each 1 \leqslant 

h \leqslant t, E\prime 
h = Eh \cup \{ (v,u) | (u, v) \in Eh+t\} , i.e., we treat the edges in Eh and

Eh+t as having the same color, but the orientation of the edges in Eh is from
left to right and the orientation of the edges in Eh is from right to left.

The above process produces a model \scrA and a graph representation G\scrA as well as the
type-behavior partitioned graph vector. It is easy to see that for every 1-type \pi i, every
behavior function gj , every vertex u \in V\pi i,gj has 1-type \pi i and behaves according to
the function gj .

To show that \scrA | = \phi , we first show that \scrA | = \forall x\forall y \alpha (x, y). Let u, v \in A. There
are two cases.

\bullet When u = v and u \in V\pi . This means V\pi \not = \emptyset . Hence | V\pi | =
\sum 

g\in \scrG N\pi ,g \not = 0.
Therefore, \pi is compatible, which by definition means \pi (x) | = \alpha (x,x). By the
construction of \scrA , we have \scrA , x/u, y/u | = \alpha (x, y).

\bullet When u \not = v and u \in V\pi and v \in V\pi \prime . Suppose the 2-type of (u, v) is \mu and
the orientation is from u to v in the graph G\scrA . This means there is g \in \scrG 
such that g(out, \mu ,\pi \prime ) \not = 0 and u \in V\pi ,g, which implies that V\pi ,g \not = \emptyset , i.e.,
N\pi ,g \not = 0. Since \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=N) holds, which states that N\pi ,g = 0 whenever
(\pi , g) is incompatible, the pair (\pi , g) is compatible:

\pi (x)\wedge \mu (x, y)\wedge \pi \prime (y) | = \alpha (x, y) and \pi (y)\wedge \mu (y,x)\wedge \pi \prime (x) | = \alpha (x, y).

Since \scrA is a structure with graph representation G\scrA , we have \scrA , x/u, y/v | =
\alpha (x, y) and \scrA , x/v, y/u | = \alpha (x, y). The case when the orientation is from v to
u can be treated in a similar manner.

Next, we show that \scrA | =
\bigwedge k

i=1 \forall x\exists Siy \beta i(x, y) \wedge x \not = y. Fix u \in A. Let \pi \in \Pi and
g \in \scrG such that u \in V\pi ,g, i.e., u behaves according to g \in \scrG in the graph G\scrA . Thus,
V\pi ,g \not = \emptyset . Since \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=N) holds, | V\pi ,g| = N\pi ,g and N\pi ,g \not = 0: the function g is
good. By the construction of the graph G\scrA , for every i\in [k], the number of elements
y \not = u such that \beta i(x, y) belongs to the 2-type of (u, y) is the sum\sum 

\mu \ni \beta i(x,y)

\sum 
\pi \prime \in \Pi 

g(out, \mu ,\pi \prime ) +
\sum 

\mu \ni \beta i(y,x)

\sum 
\pi \prime \in \Pi 

g(in, \mu ,\pi \prime ).(3.6)

By the definition of a good function, for every i \in [k], the sum (3.6) is an element in
Si. Therefore, \scrA , x/u | = \exists Siy \beta i(x, y)\wedge x \not = y for every i\in [k]. Since the choice of u is
arbitrary, \scrA | = \forall x\exists Siy \beta i(x, y)\wedge x \not = y.

Thus, we have shown that, for every \sansF \sansO 2
Pres sentence \phi in normal form (3.1), we

can effectively construct an existential Presburger sentence \sansP \sansR \sansE \sansS \infty \phi such that \phi has
a model if and only if \sansP \sansR \sansE \sansS \infty \phi holds in \scrN \infty . By Remark 3.5, the formula \sansP \sansR \sansE \sansS \infty \phi 
can be easily rewritten to another formula\sansP \sansR \sansE \sansS \phi such that \phi has a finite model if
and only if \sansP \sansR \sansE \sansS \phi holds in \scrN . The sentences \sansP \sansR \sansE \sansS \infty \phi and \sansP \sansR \sansE \sansS \phi are as required by
Theorem 3.6.

Remark 3.13. Note that in a type-behavior partitioned graph vector, informa-
tion about 2-types is coded in both the edge relation and in the partition, since the
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898 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

partition is defined via behavior functions. Thus there are additional dependencies
on sizes for a type-behavior partitioned graph vector of a model of \phi , beyond what
will be captured in outdegree constraints.

This will not be a problem for us, because these dependencies could be captured
by additional Presburger constraints. We highlight that to solve satisfiability for our
logic, it was not sufficient to know whether a biregular graph problem is solvable: we
needed to get a Presburger formula for the possible cardinalities, which we combine
with these additional constraints.

4. Proof ideas using a special case for the graph analysis results (The-
orems 3.2 and 3.3). We now discuss the proofs of the main (bi)regular graph the-
orems. These theorems deal with matrices that may contain infinite entries, as well
as matrices that can contain periodic entries. Thus elements of the witness partitions
can be forced to be infinite or finite. In the body of the paper we restrict our analysis
to graphs that are finite, and thus in particular ignore the possibility of an infinite
entry. This suffices to show the claimed bounds on the finite satisfiability problem for
our logic. In the appendix we explain the extensions needed to deal with the infinite
case, and thus the general satisfiability problem.

We start in this section by giving proofs only for the 1-color case, without the
completeness requirement. While this case does not directly correspond to any formula
used in the proof of Theorem 3.6 (since matrices (3.4) have 2 rows even when there are
no binary predicates), this case gives the flavor of the arguments, and will also be used
as the base cases in inductive constructions for the case with arbitrary colors. This
will be bootstrapped to the multicolor case in later sections. Note that the 1-color
case with the completeness requirement is not very interesting, and also not useful for
the general case: completeness states that every node on the left must be connected,
via the unique edge relation, to every node on the right---regardless of the matrix.
We can easily write down equations that capture this.

This section is organized as follows. In subsection 4.1 we will focus on the version
of Theorem 3.2 for 1-color biregular graphs. In subsection 4.2 we present a brief expla-
nation of how to modify the proof for regular digraphs (i.e., the case of Theorem 3.3).
In this section and also in the next, we will be concerned with effectiveness but not
complexity. The complexity of our procedures will be analyzed in section 8.

4.1. The case of incomplete 1-color biregular graphs. We will begin by
proving a result for 1-color biregular graphs without the completeness requirement.

Lemma 4.1. For every pair of degree matrices A \in \BbbN 1\times m
+p and B \in \BbbN 1\times n

+p , there
exists an (effectively computable) existential Presburger formula \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) such
that for every pair of size vectors \=M \in \BbbN m and \=N \in \BbbN n, the formula \sansb \sansi \sansr \sanse \sansg A| B( \=M, \=N)
holds in \scrN if and only if there is an A| B-biregular graph with size \=M | \=N .

Our strategy to prove Lemma 4.1 is to divide it into two main cases. The first
case deals with the graphs with ``big-enough"" sizes and the second case with the
graphs with ``not-big-enough"" sizes. We organize the rest of section 4.1 as follows. In
section 4.1.1 we introduce some notation and the formal definition of big-enough sizes.
Then, in section 4.1.2, we present the formula that captures A| B-biregular graphs with
big-enough sizes. The not-big-enough sizes will be handled in section 4.1.3.

4.1.1. Notation and terminology. We will use the following notation. The
term ``vectors"" always refers to row vectors (of finite length). We use \=a,\=b, \=M, \=N, . . .
(possibly indexed) to denote such row vectors. For a vector \=a, we denote by aj the
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TWO VARIABLE LOGIC WITH U.P. COUNTING 899

jth entry in \=a. We write (\=a,\=b) to denote the row vector obtained by concatenating \=a
with \=b. We use \cdot to denote the standard dot product between two vectors. To avoid
being repetitive, when vector operations such as dot products/additions/subtractions
are performed, it is implicit that the vector lengths are the same.

We now fix notation for degree matrices. Recall that, in our case, degree matrices
are matrices with entries from \BbbN +p, where p is a positive integer which is a common
nonzero period in all the set Si's in (3.1). Obviously, 1-row matrices can be viewed
as row vectors. Entries of the form a+p in a degree matrix are called periodic entries.
Otherwise, they are called fixed entries.

We write offset(a+p), for a periodic entry a+p, to denote the offset value a. Note
that this is consistent with the definition of offset of the corresponding linear set from
section 2. We define offset(a) for an integer a to be a itself. The offset of a vector
\=a, denoted by offset(\=a), is the row vector obtained by replacing every entry aj with
offset(aj). Of course, if \=a does not contain any periodic entry, then offset(\=a) is \=a itself.

In the 1-color case, matrices A and B for A| B-biregular graphs are in fact row
vectors. So, we will often write these matrices as \=a and \=b, respectively. To differentiate
between vectors that are supposed to represent the degrees of vertices in a graph and
vectors that are supposed to represent the sizes of a graph, we call the former degree
vectors and the latter size vectors. We usually write \=a,\=b, . . . to denote degree vectors
and \=M, \=N, . . . to denote size vectors. Note that degree vectors have entries from \BbbN +p,
whereas size vectors have entries from \BbbN .

For degree vectors \=a and \=b containing only fixed entries, we write \delta (\=a,\=b) to denote
max(\=a,\=b), i.e., the maximal element in \=a and \=b. When at least one of \=a and \=b contain
periodic entries, we define \delta (\=a,\=b) as the maximal entry in (offset(\=a),offset(\=b), p). For
example, if \=a= (3,1) and \=b= (2+5,4), then \delta (\=a,\=b) is the maximal entry in (3,1,2,4,5),
which is 5.

Let \=a be a degree vector. We let nz(\=a) denote the set of indices j, where aj is not
0. We let per(\=a) denote the set of indices j where aj is a periodic entry.

For a size vector \=M of length m, let \| \=MT \| denote the sum of all the entries in \=M ,
i.e.,

\sum m
j=1Mj , that is, the 1-norm of the column vector \=MT , where \=MT denotes the

transpose of \=M . For a subset X \subseteq [m], we write \| \=MT \| X =
\sum 

j\in XMj (which includes

the case \| \=MT \| \emptyset = 0). In this section we will only use \| \=MT \| X , where X is nz(\=a) or
per(\=a), for some degree vector \=a.

The intuition is that if G is an \=a| \=b-biregular graph with size \=M | \=N , then the norm
\| \=MT \| nz(\=a) denotes the number of vertices on the left of the graph with nonzero degree
bound and \| \=MT \| per(\=a) denotes the number of vertices where the corresponding entry
of \=a is periodic. The meaning of \| \=NT \| nz(\=b) and \| \=NT \| per(\=b) is analogous with respect
to the vertices on the right.

We now introduce the notion of big-enough sizes, the intuitive meaning of which
will become apparent later on.

Definition 4.2. Let \=a and \=b be degree vectors and let \=M and \=N be size vectors
with the same length as \=a and \=b, respectively. We say that \=M | \=N is big-enough for \=a| \=b,
if each of the following holds:6

(a) max(\| \=MT \| nz(\=a),\| \=NT \| nz(\=b))\geqslant 2\delta (\=a,\=b)2 + 1;

(b) \| \=MT \| per(\=a) = 0 or \| \=MT \| per(\=a) \geqslant \delta (\=a,\=b)2 + 1;
(c) \| \=NT \| per(\=b) = 0 or \| \=NT \| per(\=b) \geqslant \delta (\=a,\=b)2 + 1.

6(\delta (\=a,\=b))2 is abbreviated \delta (\=a,\=b)2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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900 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

In the following, to avoid clutter, when we say that \=M | \=N is big-enough for \=a| \=b, it
is implicit that \=M has the same length as \=a and \=N has the same length as \=b. As usual,
when presenting a Presburger formula, we will write \=x, \=y, \=z, . . . (possibly indexed) to
denote vectors of variables, where xj denotes the jth entry in \=x. We will also use the
notation \| \=xT \| to denote the sum of all the variables in \=x and, similarly, use \| \=xT \| X
to denote the sum

\sum 
j\in X xj .

4.1.2. The formula for the case of big-enough sizes. Note that for the
conditions (b) and (c) required in the definition of big-enough, there are two possible
subcases: either the norm is 0 or at least as big as some threshold. There are altogether
4 possible scenarios and our formula for big-enough sizes will be a disjunction of 4
formulas, one for each scenario. By symmetry, it suffices to consider the following
three of these scenarios for the sizes \=M | \=N of \=a| \=b-biregular graphs:

(S1) \| \=MT \| per(\=a) = \| \=NT \| per(\=b) = 0 (i.e., there are only vertices with fixed degree);

(S2) \| \=MT \| per(\=a) \not = 0 and \| \=NT \| per(\=b) = 0 (i.e., there are vertices with periodic
degrees on exactly one side);

(S3) \| \=MT \| per(\=a) \not = 0 and \| \=NT \| per(\=b) \not = 0 (i.e., there are vertices with periodic
degrees on both sides).

The rest of this section is devoted to the formulas for each of the cases above.
The formula and argument for scenario (S1): Partition on one side, merge, and

swap. Consider the formula \psi 1
\=a| \=b(\=x, \=y) defined as follows:

offset(\=a) \cdot \=x= offset(\=b) \cdot \=y \wedge \| \=xT \| per(\=a) = \| \=yT \| per(\=b) = 0.(4.1)

Note that the last conjunct simply states that the condition of (S1) holds. The first
conjunct is something we will see often, an edge counting equality, saying that the
number of outgoing edges from the left must equal the number of incoming edges on
the right.

Lemma 4.3. For every pair of degree vectors \=a,\=b and for every \=M | \=N big-enough
for \=a| \=b, the formula \psi 1

\=a| \=b(
\=M, \=N) holds in \scrN if and only if there is an \=a| \=b-biregular

graph with size \=M | \=N , where (S1) holds.

Proof. Let \=a,\=b be degree vectors and \=M | \=N be size vectors big-enough for \=a| \=b.
For the ``if"" direction, note that if we have an \=a| \=b-biregular graph G with size

\=M | \=N , where (S1) holds, the total number of edges (by counting the edges adjacent to
the vertices on the left) must be offset(\=a) \cdot \=M . Similarly by considering the vertices
on the right, the total number of edges must be offset(\=b) \cdot \=N . Thus the condition
offset(\=a) \cdot \=M = offset(\=b) \cdot \=N is always a necessary one, regardless of whether \=M | \=N is
big-enough. Since the second conjunct of \psi 1

\=a| \=b(
\=M, \=N) just says that (S1) holds the

whole \psi 1
\=a| \=b(

\=M, \=N) also holds.

We now prove the ``only if"" direction. Suppose \psi 1
\=a| \=b(

\=M, \=N) holds in \scrN . Since

\| \=MT \| per(\=a) = \| \=NT \| per(\=b) = 0, we may ignore all the periodic entries in \=a and \=b and
assume that \=a and \=b contain only fixed entries, i.e., \=a= offset(\=a) and \=b= offset(\=b).

Our proof is similar to the one of [19, Lemma 7.2] which shows how to construct an
\=a| \=b-biregular graph with size \=M | \=N for big-enough \=M | \=N . For completeness, we repeat
the construction here, which we will also see later (e.g., in the proof of Lemma 4.4).

Suppose \=a \cdot \=M =\=b \cdot \=N =K. To construct an \=a| \=b-biregular graph G with size \=M | \=N ,
we ``partition on one side, merge on the other side, and swap."" Intuitively, this means
that we first construct an \=a| 1-biregular graph G = (U,V,E) with size \=M | K, i.e., the
vertices on the left side are partitioned correctly to have degrees \=a and those on the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 901

right side all have degree 1. Then, we ``merge"" vertices on the right side so that they
have the correct degrees \=b. Since this merging may produce parallel edges between
two vertices, we perform ``edge swapping"" to get rid of them without changing the
degree of each vertex.

The details of the construction are as follows. Since \=a \cdot \=M = K, it is straight-
forward to construct an \=a| 1-biregular graph G = (U,V,E) with size \=M | K. Let
\=N = (N1, . . . ,Nn) and \=b = (b1, . . . , bn). To obtain an \=a| \=b-biregular graph, we par-
tition V = V1 \uplus \cdot \cdot \cdot \uplus Vn, where | Vj | = Njbj for each j \in [n]. This is possible since
K = \=b \cdot \=N . Then, for each j \in [n], we merge allbj vertices in Vj into 1 vertex,
thus, making its degree bj . Such merging yields an ``almost"" \=a| \=b-biregular graph,
except that it is possible there are parallel edges between two vertices. Here big-
enough comes into play, where the condition (a) in Definition 4.2 is applied, i.e.,
max(\| \=MT \| nz(\=a),\| \=NT \| nz(\=b)) \geqslant 2\delta (\=a,\=b)2 + 1. We will get rid of the parallel edges one
by one.

Suppose in-between vertices u and v there are several parallel edges. There
are only at most \delta (\=a,\=b)2 edges incident to the neighbors of vertex u (including
parallel edges). The same holds for neighbors of v. Note that there are at least
max(\| \=MT \| nz(\=a),\| \=NT \| nz(\=b)) \geqslant 2\delta (\=a,\=b)2 + 1 edges in G. So there is an edge (w,w\prime )
such that both w,w\prime are not adjacent to either u or v. To get rid of one parallel edge
(u, v) between u and v, we replace it and (w,w\prime ) by (u,w\prime ) and (w,v) (see Figure 2
for an illustration). We perform such edge swapping until there are no parallel edges.
Furthermore, such edge swapping does not change the degree of the vertices.

The formula and argument for scenario (S2): Creating a ``phantom partition"" for
the period, then merging. Recall that (S2) states that ``there are vertices with periodic
degrees on exactly one side."" By symmetry, we may assume that the vertices with
periodic degrees are on the left. Let the formula \psi 2

\=a| \=b(\=x, \=y) be defined as

\exists z
\bigl( 
offset(\=a) \cdot \=x+ pz = offset(\=b) \cdot \=y

\bigr) 
\wedge \| \=xT \| per(\=a) \not = 0 \wedge \| \=yT \| per(\=b) = 0.(4.2)

As in the earlier scenario, the last two conjuncts state that (S2) holds. The first is an
edge counting equality, with pz representing the total number of edges added by the
periodic components over all elements on the left-hand side.

Lemma 4.4. For every pair of degree vectors \=a, \=b and for every \=M | \=N big-enough
for \=a| \=b, the formula \psi 2

\=a| \=b(
\=M, \=N) holds in \scrN if and only if there is an \=a| \=b-biregular

graph with size \=M | \=N where (S2) holds.

Proof. Let \=a,\=b be degree vectors and \=M | \=N be size vectors big-enough for \=a| \=b. We
first prove the if direction. Note that if G = (U,V,E) is an \=a| \=b-biregular graph with
size \=M | \=N where (S2) holds, then the number of edges | E| should equal the sum of

ru rv

rw rw\prime 

\Rightarrow 

ru
@
@

@
@
@
@

rv

rw�
�

�
�
�
�

rw\prime 

Fig. 2. Edge swapping used in the proof of Lemma 4.3. After swapping there is one less parallel
edge between u and v, and the degrees of all vertices stay the same.
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902 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

the degrees of the vertices in U , which is offset(\=a) \cdot \=M + zp, for some integer z \geqslant 0.
Since this quantity must equal the sum of the degrees of the vertices in V , which is
offset(\=b) \cdot \=N , we conclude that the first conjunct of \psi 2

\=a| \=b(
\=M, \=N) holds. Since (S2) holds

by assumption, the second conjuncts also hold.
We now prove the ``only if"" direction. Assume that \psi 2

\=a| \=b(
\=M, \=N) holds in \scrN . By

(4.2), we have \| \=MT \| per(\=a) \not = 0 and \| \=NT \| per(\=b) = 0. Clearly we might as well assume
that \=b contains only fixed entries, i.e., offset(\=b) =\=b.

To construct an \=a| \=b-biregular graph with size \=M | \=N , we ``create a phantom parti-
tion for the period, then merge."" Abusing notation, we denote the value assigned to
variable z by z itself. Suppose offset(\=a) \cdot \=M + pz =\=b \cdot \=N . Since \=M | \=N is big-enough for
\=a| \=b, it follows immediately that ( \=M,z)| \=N is big-enough for (offset(\=a), p)| \=b. Applying
Lemma 4.3, there is an (offset(\=a), p)| \=b-biregular graph with size ( \=M,z)| \=N . That is, we
have a graph that satisfies our requirements, but there is an additional partition class
Z on the left of size z, where the degree of elements is p. Let G= (U,V,E) be such a
graph, and let U =U0\uplus U1\uplus Z, where U0 is the set of vertices whose degrees are from
the fixed entries in \=a and U1 is the set of vertices whose degrees satisfy the periodic
entries in \=a: in fact, they will initially satisfy these using just the offset. Note that
| U1| = \| \=MT \| per(\=a) and | Z| = z.

We will construct an \=a| \=b-biregular graph with size \=M | \=N . The idea is to merge
the vertices in Z with vertices in U1. Let z0 \in Z. The number of vertices in U1

reachable from z0 in distance 2 is at most \delta (\=a,\=b)2. Because \=M | \=N is big-enough for
\=a| \=b, | U1| = \| \=MT \| per(\=a) \geqslant \delta (\=a,\=b)2 + 1. Thus, there is a vertex u \in U1 not reachable
from z0 in distance 2; that is, u does not share adjacent vertices with z0. We merge
z0 and u into one vertex. See Figure 3 for an illustration. Since the degree of z0 is
p, the merging increases the degree of u by p, which does not break our requirement.
We perform this merging for each vertex in Z.

Note that the constructed graph G is \=a| \=b-biregular, where \=a contains periodic
entries and \=b contains only fixed entries. Thus, (S2) holds in G.

U0

U1 u

\mathrm{t}\mathrm{h}\mathrm{e} \mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s} \mathrm{i}\mathrm{n} V \prime 
U \prime 

Z

\mathrm{t}\mathrm{h}\mathrm{e} \mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{s} \mathrm{o}\mathrm{f} z0

z0

V \prime 

V

Fig. 3. Illustration of the choice of the vertices z0 \in Z and u\in U1. The set V \prime is the set of the
neighbors of z0. The set U \prime is the set of the neighbors of the vertices in V \prime in set U1, i.e., the set
of vertices reachable from z0 in distance 2. Since | U1| \geqslant \delta (\=a,\=b)2 + 1 and | U \prime | \leqslant \delta (\=a,\=b)2, there is a
vertex u\in U1  - U \prime . We merge z0 and u into one vertex.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 903

The formula and argument for scenario (S3): Move a multiple of the period entries
to one side. Recall that (S3) states that ``there are vertices with (finite) periodic
degrees on both sides."" Consider the formula \psi 3

\=a| \=b(\=x, \=y) that is defined as follows:

\exists z1, z2
\bigl( 
offset(\=a) \cdot \=x+ pz1 = offset(\=b) \cdot \=y+ pz2

\bigr) 
\wedge \| \=xT \| per(\=a) \not = 0\wedge \| \=yT \| per(\=b) \not = 0.

(4.3)

Lemma 4.5. For every pair of degree vectors \=a,\=b and for every \=M | \=N big-enough
for \=a| \=b, the formula \psi 3

\=a| \=b(
\=M, \=N) holds in \scrN if and only if there is an \=a| \=b-biregular

graph with size \=M | \=N where (S3) holds.

Proof. As before, the if direction is straightforward, so we focus on the only if
direction. Suppose \psi 3

\=a| \=b(
\=M, \=N) holds in \scrN . If there are witnesses z1 and z2 such that

z1 \geqslant z2, we can rewrite the first conjunct as the following:

\exists z1, z2
\bigl( 
offset(\=a) \cdot \=x+ p(z1  - z2) = offset(\=b) \cdot \=y

\bigr) 
.

That is, we ``move the multiple of period p to one side,"" i.e., to the left side. Let \=b\prime 

denote the vector formed by taking offsets of \=b. Thus by definition, \| \=NT \| per(\=b\prime ) = 0.
After replacing z1  - z2 with z, we can apply Lemma 4.4, corresponding to scenario
(S2), to \=a and \=b\prime . Applying this tells us that there is an \=a| offset(\=b)-biregular graph
with size \=M | \=N . This graph, of course, is also \=a| \=b-biregular.

Note that in this case, i.e., when z1 \geqslant z2, we are arguing, using the prior charac-
terization and algebra, that when the condition holds we can construct a graph where
the degrees on the right-hand side are exactly offset(\=b); that is, we do not need to take
advantage of the ability to have a nontrivial period. The proof for the case z1 \leqslant z2 is
analogous.

To wrap up subsection 4.1.2, we define the formula \psi \=a| \=b(\=x, \=y) as follows,

\psi 1
\=a| \=b(\=x, \=y)\vee \psi 

2
\=a| \=b(\=x, \=y)\vee \psi 

2
\=b| \=a(\=y, \=x)\vee \psi 

3
\=a| \=b(\=x, \=y),(4.4)

where each formula \psi i
\=a| \=b(\=x, \=y) handles one of the scenarios described above. Combining

Lemmas 4.3--4.5, \psi \=a| \=b(\=x, \=y) captures precisely all the big-enough sizes \=M | \=N of an \=a| \=b-
biregular graph. This is stated formally as Lemma 4.6.

Lemma 4.6. For each pair of degree vectors \=a,\=b and for each \=M | \=N big-enough for
\=a| \=b, the formula \psi \=a| \=b( \=M, \=N) holds in \scrN if and only if there is an \=a| \=b-biregular graph
with size \=M | \=N .

4.1.3. The formula for the case of not-big-enough sizes: Fixed size
encoding. Subsection 4.1.2 gives a formula that captures the existence of 1-color
biregular graphs for big-enough sizes. We now turn to sizes that are not-big-enough---
that is, when one of the conditions (a)--(c) is violated. When condition (a) is violated,
we have restricted the total size of the graph, and thus we can write a formula that
simply enumerates all possible valid sizes.

We will first consider the case when (b) is violated, while (a) and (c) hold. If
condition (b) is violated, the value of \| \=MT \| per(\=a) is some r between 1 and \delta (\=a,\=b)2 and
it suffices to show that, for each fixed r between 1 and \delta (\=a,\=b)2, we can find a formula
that works for this r. The idea is that a fixed number of vertices in a graph can be
``encoded"" as formulas. We will refer to this technique as fixed size encoding in the
remainder of the paper.
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904 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

We will define a formula covering the case where each of the following holds:
\bullet \| \=MT \| nz(\=a)  - \| \=MT \| per(\=a) \geqslant 2\delta (\=a,\=b)2 + 1.
\bullet \| \=MT \| per(\=a) = r for some fixed r between 1 and \delta (\=a,\=b)2.
\bullet \| \=NT \| per(\=b) = 0 or \geqslant \delta (\=a,\=b)2 + 1.

Note that the first bullet item is a slightly stronger requirement than the one required
in the definition of big-enough size. However, this does not affect the applicability
to the case where (b) is violated and both (a) and (c) hold. If (b) is violated, i.e.,
\| \=MT \| per(\=a) = r, where 1 \leqslant r \leqslant \delta (\=a,\=b)2 and if \| \=MT \| nz(\=a)  - \| \=MT \| per(\=a) \leqslant 2\delta (\=a,\=b)2,
then \| \=MT \| nz(\=a) \leqslant 3\delta (\=a,\=b)2, which means that the number of edges is fixed and all
possible sizes of A| B-biregular graphs can be simply enumerated.

The formula is defined inductively on r, with the base case r = 0. Note that
when r= 0, \| \=MT \| per(\=a) = 0, which means (b) is no longer violated and it falls under
the big-enough case. We now give the inductive construction. Let \=a and \=b be degree
vectors. For an integer r\geqslant 0, define the formula \phi r

\=a| \=b(\=x, \=y) as follows:
\bullet when r= 0, let

\phi 0\=a| \=b(\=x, \=y) := \| \=xT \| per(\=a) = 0 \wedge \psi \=a| \=b(\=x, \=y),

where \psi \=a| \=b(\=x, \=y) is defined in (4.4);
\bullet when r\geqslant 1, let

\phi r\=a| \=b(\=x, \=y) := \exists s\exists \=z0\exists \=z1
\bigvee 

i\in per(\=a)

\left(  xi \not = 0 \wedge \=z0 + \=z1 = \=y
\wedge \| \=zT1 \| nz(\=b) = offset(ai) + ps

\wedge \phi r - 1
\=a| (\=b,\=b - \=1)

(\=x - ei, \=z0, \=z1)

\right)  ,(4.5)

where the lengths of \=z0 and \=z1 are the same as \=y, ei is the unit vector where
the ith component is 1, and the subtraction \=b  - \=1 of degree vectors is the
usual elementwise subtraction except the cases b+p  - 1 = (b - 1)+p for b > 0,
0+p  - 1 = (p - 1)+p, and 0 - 1 = 0.

Lemma 4.7. For every pair of degree vectors \=a,\=b, for every pair of size vectors
\=M, \=N , and each integer r\geqslant 0 such that

\bullet \| \=MT \| nz(\=a) \geqslant 2\delta (\=a,\=b)2 + 1+ r,
\bullet \| \=MT \| per(\=a) = r,
\bullet \| \=NT \| per(\=b) \geqslant \delta (\=a,\=b)2 + 1,

the formula \phi r
\=a| \=b(

\=M, \=N) holds in \scrN if and only if there is an \=a| \=b-biregular graph with

size \=M | \=N .

Proof. Let \=a,\=b be degree vectors and let \=M, \=N be size vectors that satisfy the
hypothesis. The proof is by induction on r. The base case, as in the formulas, is
r= 0, and is straightforward by the characterization of big-enough.

Now assume the claim holds inductively for r  - 1 \geqslant 0, and consider r. We
begin with the if direction, which provides the intuition for these formulas. Suppose
G= (U,V,E) is an \=a| \=b-biregular graph with size \=M | \=N that satisfies all the items listed
above. Let U =U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn be witness partitions.

Since r \not = 0 and \| \=MT \| per(\=a) = r, there is an i \in per(\=a) such that Ui \not = \emptyset . Choose
u \in Ui. Based on this u, for each j \in [n] we define Zj to be the set of vertices in Vj
adjacent to u. Figure 4 illustrates the situation.

If we omit the vertex u and all its adjacent edges, then, for each j \in [n], every
vertex in Zj has degree bj  - 1. Note here that, for each j where Zj \not = \emptyset , bj > 0
since u is adjacent to the vertices in Zj \subseteq Vj . Thus, we are left with an \=a| (\=b,\=b - \=1)-
biregular graph with size ( \=M  - ei)| ( \=K0, \=K1), where \=K0 = (| V1|  - | Z1| , . . . , | Vn|  - | Zn| )
and \=K1 = (| Z1| , . . . , | Zn| ). Also note that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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U1

Ui

Um

\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}
\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}

\mathrm{i}\mathrm{n} V1
\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}

\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}
\mathrm{t}\mathrm{o} u

Z1

\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s} \mathrm{i}\mathrm{n} Vn \mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{t}\mathrm{o} u Zn

u

V1

Vn

Fig. 4. Illustration of why the formula for the not-big-enoughcase is a necessary condition.
Note: color appears only in the online article.

\bullet \| ( \=M  - ei)
T \| nz(\=a) = \| \=MT \| nz(\=a)  - 1\geqslant 2\delta (\=a,\=b)2 + 1+ (r - 1).

The equality comes from the fact that i \in per(\=a), hence i \in nz(\=a) and
\| eTi \| nz(\=a) = 1, which implies the equality. The inequality comes from the
assumption that \| \=MT \| nz(\=a) \geqslant 2\delta (\=a,\=b)2 + 1+ r;

\bullet \| ( \=M  - ei)
T \| per(\=a) = r - 1.

This comes from the assumptions that \| \=MT \| per(\=a) = r and i\in per(\=a);
\bullet \| ( \=K0, \=K1)

T \| per(\=b,\=b - \=1) = \| \=NT \| per(\=b) \geqslant \delta (\=a,\=b)2 + 1.
The equality comes from the fact that \=N = \=K0+ \=K1, while periodic entries in
\=b stay periodic in \=b - \=1. The inequality is the assumption that \| \=NT \| per(\=b) \geqslant 
\delta (\=a,\=b)2 + 1.

The items above tell us that ( \=M  - ei)| ( \=K0, \=K1) satisfies the hypothesis of the lemma
(w.r.t. to the degree vectors \=a| (\=b,\=b - \=1)). Thus, we can apply the induction hypothesis
and obtain that \phi r - 1

\=a| (\=b,\=b - \=1)
( \=M  - ei, \=K0, \=K1) holds. Moreover, since i \in per(\=a), the

degree of u is offset(ai) + ps for some s and hence \| \=KT
1 \| = offset(ai) + ps. Since,

by construction, every vertex in each Zj is adjacent to u, | Zj | = 0 whenever bj = 0,
so, \| \=KT

1 \| = offset(ai) + ps implies that \| \=KT
1 \| nz(\=b) = offset(ai) + ps, and therefore

\phi r
\=a| \=b(

\=M, \=N) holds, with the witnessing \=z0 and \=z1 being \=K0 and \=K1, respectively.

For the only if direction, suppose \phi r
\=a| \=b(

\=M, \=N) holds. Then we can fix some s, \=z0, \=z1,

and i\in per(\=a) such that
(a) Mi \not = 0;
(b) offset(ai) + ps= \| \=zT1 \| nz(\=b);
(c) \=z0 + \=z1 = \=N ;
(d) \phi r - 1

\=a| (\=b,\=b - \=1)
( \=M  - ei, \=z0, \=z1) holds.

We prove from this that a biregular graph of the appropriate size exists.
By similar reasoning as in the previous case (i.e., the if case), the following hold:
\bullet \| ( \=M  - ei)

T \| nz(\=a) = \| \=MT \| nz(\=a)  - 1\geqslant 2\delta (\=a,\=b)2 + 1+ (r - 1);
\bullet \| ( \=M  - ei)

T \| per(\=a) = r - 1;
\bullet \| (\=z0, \=z1)T \| per(\=b,\=b - \=1) = \| \=NT \| per(\=b) \geqslant \delta (\=a,\=b)2 + 1.
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906 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

That is, ( \=M  - ei)| (\=z0, \=z1) satisfies the hypothesis of the lemma (w.r.t. to the degree
vectors \=a| (\=b,\=b  - \=1)). Thus, we can apply the induction hypothesis and obtain an
\=a| (\=b,\=b  - \=1)-biregular graph G = (U,V,E) with size ( \=M  - ei)| (\=z0, \=z1). Let U = U1 \uplus 
\cdot \cdot \cdot \uplus Um and V = V0,1 \uplus \cdot \cdot \cdot \uplus V0,n \uplus V1,1 \uplus \cdot \cdot \cdot \uplus V1,n be the witness partitions. Note
that the degrees of the vertices in V1,1 \uplus \cdot \cdot \cdot \uplus V1,n are \=b - \=1.

Let u be a fresh vertex. We construct an \=a| \=b-biregular graph G\prime = (U\cup \{ u\} , V,E\prime ),
by connecting u with every vertex in

\bigcup 
j\in nz(\=b) V1,j . This makes the degree of the

vertices in V1,1\uplus \cdot \cdot \cdot \uplus V1,n become \=b. The formula states that \| \=zT1 \| nz(\=b) = offset(ai)+ps;
thus, the degree of u is offset(ai) + ps, which satisfies the requirement for a vertex
to be in Ui. Moreover, \=z0 + \=z1 = \=N . Thus, the graph G\prime has size \=M | \=N . As witness
partition for G\prime we use the Uj on the left, while on the right each V0,j \cup V1,j becomes
a single partition element.

The case where (a) and (b) hold, but (c) is violated is handled symmetrically.
Next, we consider the case when (a) holds, but both (b) and (c) are violated. The

treatment is similar to the previous case. We will define a formula for the case where
all of the following hold.

\bullet \| \=MT \| nz(\=a)  - \| \=MT \| per(\=a) \geqslant 2\delta (\=a,\=b)2 + 1.
\bullet \| \=NT \| nz(\=b)  - \| \=NT \| per(\=b) \geqslant 2\delta (\=a,\=b)2 + 1.

\bullet \| \=MT \| per(\=a) = r1 for some fixed r1 between 0 and \delta (\=a,\=b)2.
\bullet \| \=NT \| per(\=b) = r2 for some fixed r2 between 0 and \delta (\=a,\=b)2.

The formula is defined inductively on r2 with the base case r2 = 0. Note that
when r2 = 0, \| \=NT \| per(\=b) = 0, which means (c) is no longer violated and it falls under
the previous case. Define the formula \phi r1,r2

\=a| \=b (\=x, \=y) as follows:
\bullet when r2 = 0, let

\phi r1,0
\=a| \=b (\=x, \=y) := \| \=yT \| per(\=b) = 0 \wedge \phi r1

\=a| \=b(\=x, \=y),

where \phi r1
\=a| \=b(\=x, \=y) is defined in the previous case;

\bullet when r2 \geqslant 1, let

\phi r1,r2
\=a| \=b (\=x, \=y) := \exists s\exists \=z0\exists \=z1

\bigvee 
i\in per(\=b)

\left(  yi \not = 0 \wedge \=z0 + \=z1 = \=x
\wedge \| \=zT1 \| nz(\=a) = offset(bi) + ps

\wedge \phi r1,r2 - 1

(\=a,\=a - \=1)| \=b(\=z0, \=z1, \=y - ei)

\right)  .(4.6)

Here the lengths of \=z0 and \=z1 are the same as \=x, ei is the unit vector where
the ith component is 1, and the subtraction \=a  - \=1 of degree vectors is the
same as in the earlier case.

Note that the formula \phi r1,r2
\=a| \=b (\=x, \=y) is defined as in the previous case, but the roles of

\=a, \=x and \=b, \=y are reversed and the base case is now the formula \phi r1,0(\=x, \=y).

Lemma 4.8. For every pair of degree vectors \=a,\=b, for every pair of size vectors
\=M, \=N , and each integer r1, r2 \geqslant 0 such that

\bullet \| \=MT \| nz(\=a) \geqslant 2\delta (\=a,\=b)2 + 1+ r1,
\bullet \| \=NT \| nz(\=b) \geqslant 2\delta (\=a,\=b)2 + 1+ r2,

\bullet \| \=MT \| per(\=a) = r1,
\bullet \| \=NT \| per(\=b) = r2,

the formula \phi r1,r2
\=a| \=b ( \=M, \=N) holds in \scrN if and only if there is an \=a| \=b-biregular graph with

size \=M | \=N .
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TWO VARIABLE LOGIC WITH U.P. COUNTING 907

The proof of Lemma 4.8 is similar to Lemma 4.7, hence is omitted.
We have completed the case of fixed r1, r2. As mentioned above, this suffices to

give the entire not-big-enough case, via enumerating solutions for each of the finitely
many possible values of r1, r2.

To wrap up this section, we define the formula \sansb \sansi \sansr \sanse \sansg \=a| \=b(\=x, \=y) required in Lemma 4.1
to characterize solutions in the 1-color case without the completeness requirements

\sansb \sansi \sansr \sanse \sansg \=a| \=b(\=x, \=y) :=\psi \=a| \=b(\=x, \=y) \vee \phi \=a| \=b(\=x, \=y) \vee 
\delta (\=a,\=b)2\bigvee 
r=1

\Bigl( 
\phi r\=a| \=b(\=x, \=y)\vee \phi 

r
\=b| \=a(\=y, \=x)

\Bigr) 
\vee 

\bigvee 
0\leqslant r1,r2\leqslant \delta (\=a,\=b)2

\phi r1,r2
\=a| \=b (\=x, \=y),

where \psi \=a| \=b(\=x, \=y) is defined in (4.4) to deal with the big-enough sizes, \phi \=a| \=b(\=x, \=y) is
the formula enumerating all valid sizes when condition (a) is violated, the formulas
in the second last disjunction deal with the not-big-enough cases when exactly one
of the conditions (b) or (c) is violated as defined in (4.5), and the formulas in the
final disjunctions deal with the other not-big-enough cases as defined in (4.6). The
correctness of the construction follows immediately from Lemmas 4.6 and 4.8.

4.2. The proof in the 1-color case for biregular digraphs. For the regular
digraph case, we can essentially use the same argument as in the biregular case. Recall
that we define digraphs as without any self-loop. Thus, a digraph can be viewed as
a bipartite graph by splitting every vertex u into two vertices, where one is adjacent
to all the incoming edges, and the other to all the outgoing edges; see Figure 5.
Conversely, a bipartite graph can be viewed as a digraph by merging every two vertices
into one vertex. Thus, \=a| \=b-regular digraphs with size \=M can be characterized as \=a| \=b-
biregular graphs with size \=M | \=M (see [19, section 8] for a similar construction when
the degrees are fixed).

To illustrate, we will give a formula that captures the sizes of a+p| b-regular di-
graph. Consider the formula

\varphi (x) :=\exists z ax+ pz = bx.

We claim that for every M \geqslant bp+ p+ 1, the formula \varphi (M) holds in \scrN \infty if and only
if there is a+p| b-regular digraph of size M .

For the only if direction, suppose there is a+p| b-regular digraph G of size M .
Splitting each vertex in G into 2---as illustrated in Figure 5---we obtain a+p| b-biregular
graph of size M | M , which by Lemma 4.4, implies that \varphi (M) holds in \scrN \infty .

For the if direction, suppose \varphi (M) holds in \scrN \infty . By Lemma 4.3, there is an
(a, p)| b-biregular graph G= (U,V,E) of size (M,z)| M . Let U = U0 \uplus U1, where U0 is
the set of vertices of degree a and U1 is the set of vertices of degree p, the phantom
partition to be merged with U0 (using the same merging technique as in Lemma 4.4).
Let u1, u2, . . . and v1, v2, . . . be the enumeration of vertices in U0 and V , respectively.

rwH
HHHj-

�
���*

����1

PPPPq

\Rightarrow rvH
HHHj-

�
���*

ru����1

PPPPq

Fig. 5. Splitting a vertex w in a digraph G into two vertices u and v in G\prime . One is adjacent to
all the outgoing edges and the other to all the incoming edges.
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908 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

We will call each vi the mirror image of ui and, similarly, each ui is the mirror image
of vi for every i\geqslant 1.

To obtain a+p| b-regular digraph of size M , we perform the following steps:
1. Ensure that each ui is not adjacent to its mirror image in G.

This can be achieved in the same manner by the edge swapping technique in
Lemma 4.3. (See also Figure 2.)

2. Merge the vertices in the phantom partition U1 with vertices in U0 as follows.
For each vertex w \in U1, we merge it with a vertex u \in U0 where u is not
reachable from w in distance 2 and u is not the mirror image of the vertices
adjacent to w. Such a u exists since M \geqslant bp+ p+1. Note that since u is not
the mirror image of the vertices adjacent to w, after the merging of w and u,
each vertex in U0 is still not adjacent to its mirror image in V .
Thus, we obtain a+p| b-biregular graph G\prime = (U0, V,E

\prime ) of size M | M .
3. Orient all the edges in E\prime from left to right and merge each vertex in U0 with

its mirror image in V , thus, obtaining an a+p| b-regular digraph of size M .
Note that since each vertex in U0 is not adjacent to its mirror image in G\prime ,
there is noself-loop in the digraph.

Some remarks on the general case versus the 1-color case. To conclude
this section, we stress that although the 1-color case contains many of the key ideas,
the multicolor case requires a finer analysis to deal with the big-enough case, and
also may benefit from a reduction that allows one to restrict the analysis to matrices
of a very special form that we call ``simple matrices"". Note that our definition of a
multicolor graph requires the edges of different colors to be disjoint, which imposes
additional correlations between sizes on top of those one would get from considering
each color in isolation. We will present these details in the following sections.

5. Proof of Theorem 3.2 for the case of ``simple"" matrices and without
the completeness requirement. This section will provide the construction of the
Presburger formula for the case where the matrices A and B may have multiple colors,
but are what we call simple matrices, defined formally in Definition 5.1, and where
the requirement of being complete is dropped. Here it is useful to recall that a fixed
entry is of the form a\in \BbbN and a periodic entry is of the form a+p.

Definition 5.1. A degree matrix A is simple if every row consists of either only
periodic entries or only fixed entries.

That is, for every fixed edge color, either each partition is constrained using fixed
degree constraints on each vertex, or each partition is only ``loosely constrained""
with a periodic constraint on each vertex. We devote this section to the proof of the
following lemma, which only deals with finite graphs. The extension to general graphs
can be found in Appendix C.

Lemma 5.2. For every pair of simple matrices A \in \BbbN t\times m
+p and B \in \BbbN t\times n

+p , there
exists an (effectively computable) existential Presburger formula \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) such
that, for every pair of size vectors \=M \in \BbbN m and \=N \in \BbbN n, the formula \sansb \sansi \sansr \sanse \sansg A| B( \=M, \=N)
holds in \scrN if and only if there is an A| B-biregular graph with size \=M | \=N .

This section is organized as follows. We introduce the proper notation in subsec-
tion 5.1. In the setting with multiple colors we also need to introduce big-enough sizes
and ``extra-big-enough"" sizes. The big-enough sizes are defined only for the matrices
A| B whose entries are all fixed, whereas the extra-big-enough sizes are defined for
the matrices A| B whose entries can be fixed and periodic. As in the 1-color case, the
formula \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) is divided into three cases:
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TWO VARIABLE LOGIC WITH U.P. COUNTING 909

(1) For big-enough sizes and when the degree matrices contain only fixed entries,
dealt with in section 5.2.

(2) For extra-big-enough sizes and when the degree matrices may contain fixed
and periodic entries, in section 5.3.

(3) For not-big-enough/not-extra-big-enough sizes, in section 5.4.
Lemma 5.2 can then be proven by combining these cases, as we show in section 5.5.

Briefly, the formula for case (1) is the same as the one in [19, Theorem 7.4].
However, the proof we give here is more straightforward. The formula for case (2) is a
generalization of the formula for case (1) and we will use techniques such as ``creating
a phantom partition for the period, then merging"" (Lemma 4.4); ``move a multiple of
the period entries to one side"" (Lemma 4.5), and edge swapping (Lemma 4.3). As
with the 1-color case, the purpose of extra-big-enough sizes is to enable us to perform
these techniques without violating the requirement of A| B-biregularity. Finally, the
formula for not-extra-big-enough sizes is a straightforward generalization of the ``fixed
size encoding"" presented in subsection 4.1.3.

5.1. Notation and terminology. As before, the term vectors means row vec-
tors and we use \=x, \=y, \=z (possibly indexed) to denote vectors of variables, and \=M, \=N to
denote size vectors.

Since we are now transitioning to general multicolor graphs, we will use matrix
notation, where matrices are primarily used to describe the degrees of vertices. We
will often call the matrices degree matrices. We use \cdot to denote matrix multiplica-
tion. When we perform matrix multiplication, we always assume that the sizes of the
operands are appropriate. We write It to denote the identity matrix with size t\times t.

The transpose of a matrix A is denoted by AT . The entry in row i and column j is
Ai,j . We write Ai,\ast and A\ast ,j to denote the ith row and jth column of A, respectively.
The numbering of the rows and columns of a matrix starts from 1.

As before, we call an entry Ai,j a fixed entry, if it is some a \in \BbbN . Otherwise, it
is called a periodic entry, i.e., an entry of the form a+p. The offset of A, denoted by
offset(A), is the matrix obtained by replacing every entry Ai,j with offset(Ai,j). Of
course, if A does not contain any periodic entry, then offset(A) is A itself.

For a matrix A (with t rows and m columns) that contains only fixed entries,
its norm is defined as \| A\| = maxj\in [m]

\sum t
i=1Ai,j . This is the standard 1-norm.

Of course, a vector \=a (of fixed entries) can be viewed as a 1 row matrix. Thus,
for \=a = (a1, . . . , am), its norm is \| \=a\| = max(a1, . . . , am) and the norm of its trans-
pose is \| \=aT \| =

\sum m
i=1 ai. For matrices A and B that contain only fixed entries,

\delta (A,B) denotes max(\| A\| ,\| B\| ). If they contain periodic entries, \delta (A,B) denotes
max(\| offset(A)\| ,\| offset(B)\| , p). Note that \delta (A,B) is actually the generalization of
the \delta (\=a,\=b) introduced in section 4.1.1 for the 1-color case.

If A and B are matrices with the same number of columns, (AB ) denotes the matrix
where the first sequence of rows is A and the next sequence of rows is B. Likewise, if
A and B have the same number of rows, (A,B) is the matrix where the first sequence
of columns is A and the next sequence of columns is B.

For degree matrices A and B (with entries from \BbbN +p and the same number of
rows), and for all size vectors \=M and \=N , we say that \=M | \=N is appropriate for A| B, if
the length of \=M is the same as the number of columns of A and the length of \=N is
the same as the number of columns of B. Since we will only use degree matrices A
and B to describe A| B-biregular graphs (or A| B-regular digraphs), in the rest of the
paper, whenever we use the notation A| B, we implicitly assume that A and B have
the same number of rows. Moreover, unless indicated otherwise, entries in degree
matrices always come from \BbbN +p.
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910 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Next, we generalize the notion of big-enough in section 4. The distinction between
big-enough and not-big-enough size vectors used for the 1-color case in section 4 will
need to be refined.

Definition 5.3. Let A and B be degree matrices with t rows whose entries are
all fixed entries, i.e., from \BbbN . For size vectors \=M and \=N , where \=M | \=N is appropriate
for A| B, \=M | \=N is big-enough for A| B if the following holds for every i\in [t]:

(a) max(\| \=MT \| nz(Ai,\ast ),\| \=NT \| nz(Bi,\ast )) \geqslant 2\delta (A,B)2 + 1.

Definition 5.4. Let A and B be simple degree matrices with t rows. Let \=M and
\=N be size vectors where \=M | \=N is appropriate for A| B. We say that \=M | \=N is extra-big-
enough for A| B, if each of the following holds, for every i\in [t]:

(a) max(\| \=MT \| nz(Ai,\ast ),\| \=NT \| nz(Bi,\ast ))\geqslant 8t2\delta (A,B)4 + 1;
(b) \| \=MT \| per(Ai,\ast ) = 0 or \| \=MT \| per(Ai,\ast ) \geqslant \delta (A,B)2 + 1;
(c) \| \=NT \| per(Bi,\ast ) = 0 or \| \=NT \| per(Bi,\ast ) \geqslant \delta (A,B)2 + 1.

Note that since A is a simple matrix, for each color i\in [t], either per(Ai,\ast ) = \emptyset or
per(Ai,\ast ) = [m], where m is the number of columns in A. The first case is equivalent
to \| \=MT \| per(Ai,\ast ) = \| \=MT \| = 0 in condition (b), while the second case is equivalent to
\| \=MT \| per(Ai,\ast ) = \| \=MT \| \geqslant \delta (A,B)2 + 1. The same property also holds for matrix B
and size vector \=N . Thus, conditions (a)--(c) can be equivalently restated as

\bullet max(\| \=MT \| nz(Ai,\ast ),\| \=NT \| nz(Bi,\ast ))\geqslant 8t2\delta (A,B)4 + 1 for every i\in [t];
\bullet if A contains periodic entries, then \| \=MT \| \geqslant \delta (A,B)2 + 1;
\bullet if B contains periodic entries, then \| \=NT \| \geqslant \delta (A,B)2 + 1.

This is the version we will use in arguments below. The formulation in Defini-
tion 5.4 was presented only to highlight the generalization from the 1-color case in
Definition 4.2.

When we say \=M | \=N is big/extra-big-enough for A| B, we implicitly assume that
\=M | \=N is appropriate for A| B.

Remark 5.5. Some basic observations:
\bullet The notion of big-enough is defined just on matrices A| B which contain only

fixed entries.
\bullet Definition 5.3 is a direct generalization of Definition 4.2 for the case without

periodic degrees, where \=M | \=N is big-enough for A| B, if \=M | \=N is big-enough for
every color, i.e., \=M | \=N is big-enough for degree vector Ai,\ast | Bi,\ast (in the sense
of Definition 4.2) for every row i.

\bullet In the notion of extra-big-enough, in Definition 5.4 condition (a) requires that
max(\| \=MT \| nz(Ai,\ast ),\| \=NT \| nz(Bi,\ast )) is at least 8t

2\delta (A,B)4 +1, which is quartic
in \delta (A,B), a jump from quadratic for the 1-color case. The reason is purely
technical, because in multiple color graphs, in some cases periodic entries can
be reduced to fixed entries but with quadratic blowup on the matrix entries.

\bullet Of course, extra-big-enough is stronger than big-enough.

Informally, big-enough entries are those that will allow the analogous results to
Lemma 4.3 from the 1-color case, which concerned fixed-degree constraints, to go
through. Extra big-enough will have some additional margin over big-enough, which
will allow us to handle the case of matrices with periodic entries by reduction to the
fixed-entry case.

5.2. Proof of Lemma 5.2 for big-enough sizes, when the degree matrices
are simple matrices containing only fixed entries. Let A and B be degree
matrices with t rows that contain only fixed entries. Note that in this case, A and B
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TWO VARIABLE LOGIC WITH U.P. COUNTING 911

are also simple matrices. In fact, they are just a special case of simple matrices that
do not contain periodic entries, and the corresponding big-enough sizes are defined in
Definition 5.3. Consider the formula:

\Psi 1
A| B(\=x, \=y) := A \cdot \=xT = B \cdot \=yT .(5.1)

This formula is a generalization of (4.1) to the case of multiple color graphs for \=a
and \=b without periodic entries.

Lemma 5.6. For every pair of degree matrices A,B that contain only fixed entries
and for every pair of size vectors \=M, \=N such that \=M | \=N is big-enough for A| B, the
formula \Psi 1

A| B(
\=M, \=N) holds in \scrN if and only if there is an A| B-biregular graph with

size \=M | \=N .

Proof. Let A and B be degree matrices with t rows, containing only fixed entries.
Let \=M | \=N be big-enough for A| B.

We argue for the if direction. Let G = (U,V,E1, . . . ,Et) be an A| B-biregular
graph with size \=M | \=N . The equality, as in the analogous 1-color case, comes from the
``edge counting equality,"" i.e., both A \cdot \=MT and B \cdot \=NT simply ``count"" the number of
edges in each color, i.e., A \cdot \=MT = (| E1| , . . . , | Et| )T = B \cdot \=NT . Thus, \Psi 1

A| B(
\=M, \=N)

holds.
We now show the only if direction. Suppose \Psi 1

A| B(
\=M, \=N) holds in\scrN , i.e., A\cdot \=MT =

B \cdot \=NT . We will show that there is an A| B-biregular graph with size \=M | \=N .
The proof is by induction on t. The base case t= 1 has been shown in Lemma 4.3.

For the induction hypothesis, we assume the lemma holds when the number of colors
is less than t.

Let A\prime and B\prime be the degree matrices obtained by omitting the last row in A
and B, respectively. Since \=M | \=N is big-enough for A| B, we infer that \=M | \=N is big-
enough for A\prime | B\prime . Applying the induction hypothesis, there is an A\prime | B\prime -biregular
graph G\prime = (U \prime , V \prime ,E1, . . . ,Et - 1) with size \=M | \=N .

Similarly, since \=M | \=N is big-enough for A| B, it is big-enough for At,\ast | Bt,\ast (in
the sense of Definition 4.2). Recall that At,\ast and Bt,\ast are the last rows of A and
B. Applying the induction hypothesis, there is an At,\ast | Bt,\ast -biregular graph G\prime \prime =
(U \prime \prime , V \prime \prime ,Et) with size \=M | \=N . Since G\prime and G\prime \prime have the same size, we can assume that
U \prime \prime =U \prime and V \prime \prime = V \prime .

To obtain the desired A| B-biregular graph, we first merge the two graphs, ob-
taining a single graph G= (U,V,E1, . . . ,Et). Such a graph G is almost A| B-biregular,
except that it is possible we have an edge (u, v) which is in E1\cup \cdot \cdot \cdot \cup Et - 1 as well as in
Et. Here we will make use of the edge swapping technique adapted from Lemma 4.3.

Recall that \delta (A,B) = max(\| A\| ,\| B\| ). Thus, there are only at most \delta (A,B)2

edges incident to the neighbors (via any of E1, . . . ,Et-edges) of vertex u. The same
holds for neighbors of v. Since \=M | \=N is big-enough for A| B, there are at least
max(\| \=MT \| nz(At,\ast ),\| \=NT \| nz(Bt,\ast )) \geqslant 2\delta (A,B)2 + 1 Et-edges in G. So there is an Et-
edge (w,w\prime ) such that both w,w\prime are not adjacent (via any of E1, . . . ,Et-edges) to
either u or v. We can perform edge swapping where we omit the edges (u, v), (w,w\prime )
from Et, but add (u,w\prime ), (w,v) into Et. This edge swapping does not effect the degree
of any of the vertices u, v,w,w\prime .

5.3. Proof of Lemma 5.2 for extra-big-enough sizes. In this section we will
present the construction of the formula for Lemma 5.2 that captures all the extra-
big-enough sizes. For illustration, we start with subsection 5.3.1 where we consider a
special case when the degree matrices A and B contain only 1 column and 2 rows, the
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912 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

proof of which already contains all the essential ideas required for the proof this case.
Then, in subsection 5.3.2, we present the general formula for the extra-big-enough
sizes for Lemma 5.2.

5.3.1. A special case to illustrate the main ideas. We consider the two-

color case, i.e., t = 2, and the degree matrices A0 = (
a1

a+p
2

) and B0 = ( b
+p
1

b2
), where

a1, a2, b1, b2 are all nonzero. Both A0 and B0 have only one column---that is, only a
single partition, whose size will be the size of one side of the bipartite graph. So it is
trivial that every row contains either only fixed entries or only periodic entries. Hence
both are simple matrices.

We will now present the formula \psi 0(x, y) that captures all possible extra-big-
enough sizes M | N of A0| B0-biregular graphs:

\psi 0(x, y) := \exists z1\exists z2 a1x= b1y+ pz1 \wedge a2x+ pz2 = b2y.

Equivalently, we can write \psi 0(x, y) in matrix form,

\psi 0(x, y) := \exists z1\exists z2 C

\biggl( 
x
z2

\biggr) 
= D

\biggl( 
y
z1

\biggr) 
,

where C = ( a1 0
a2 p ) and D= ( b1 p

b2 0 ). Note that C and D contain only fixed entries. The
following lemma will be useful.

Lemma 5.7. For every pair of integers M,N \geqslant 0, if M | N is extra-big-enough for
A0| B0, then, for all integers K,L\geqslant 0, (M,K)| (N,L) is big-enough for C| D.

Proof. The proof is straightforward from the definitions of extra-big-enough, big-
enough, \delta (A0,B0), and \delta (C,D).

We now show that \psi 0(x, y) captures all possible extra-big-enough sizes M | N of
A0| B0-biregular graphs, stated formally in Lemma 5.8. The proof actually contains
all the essential ideas required for the proof of Lemma 5.2.

Lemma 5.8. For every pair of integers M,N \geqslant 0, if M | N is extra-big-enough for
A0| B0, then the formula \psi 0(M,N) holds in \scrN if and only if there is an A0| B0-biregular
graph with size M | N .

Proof. Let M | N be extra-big-enough for A0| B0. Again, the if direction follows
immediately from the edge counting equality. So, we focus on the only if direction.
Suppose \psi 0(M,N) holds, i.e., there are K,L\geqslant 0 such that

a1M = b1N + pK,(5.2)

a2M + pL = b2N.(5.3)

SinceM | N is extra-big-enough for A0| B0, by Lemma 5.7, (M,L)| (N,K) is big-enough
for C| D. By Lemma 5.6, there is a C| D-biregular graph G = (U,V,E1,E2) of size
(M,L)| (N,K). Let U = U0 \uplus U1 and V = V0 \uplus V1 be the witness partitions, where
(| U0| , | U1| ) = (M,L) and (| V0| , | V1| ) = (N,K) and the degree of every vertex is as
follows:

\bullet every vertex in U0 has E1-degree a1 and E2-degree a2;
\bullet every vertex in U1 has E1-degree 0 and E2-degree p;
\bullet every vertex in V0 has E1-degree b1 and E2-degree b2;
\bullet every vertex in V1 has E1-degree p and E2-degree 0.

We will show how to merge every vertex in the ``phantom"" partition U1 with some
vertex in U0 and likewise, merge every vertex in the phantom partition V1 with some
vertex in V0.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 913

We consider two cases: (a) at least one of K or L is zero; (b) both K and L are
not zero.

Case (a): When at least one of K or L is zero. We may assume that K = 0,
i.e., V1 = \emptyset . Hence we may consider G = (U,V,E1,E2) as a C| offset(B0)-biregular
graph of size (M,L)| N . We will use the same merging technique as in scenario (S2)
in subsection 4.1.2.

Let w \in U1. The number of vertices in U0 reachable from w in distance 2 is at
most \delta (A0,B0)

2. Due to the condition that (M,L)| N is big-enough for C| offset(B0),
we have | U0| = M \geqslant \delta (A0,B0)

2 + 1. Thus, there is a vertex u \in U0 not reachable
from w in distance 2: that is, u does not share adjacent vertices with w. We merge
z0 and u into one vertex. Since the E1-degree of w is 0 and its E2-degree is p, the
merging does not break the A0| B0-biregularity requirement. We perform this merging
for every vertex in U1 and obtain an A0| B0-biregular graph of size M | N .

Case (b): When both K and L are not zero. For this case, we first establish that
K \leqslant \delta (A0,B0)

2N and L\leqslant \delta (A0,B0)
2M , which will be used to bound the number of

vertices in the phantom partition that are merged with the same vertex in the ``real
partition.""

By (5.2) and (5.3), we have

0 < pK = a1M  - b1N \leqslant a1M  - N,(5.4)

0 < pL = b2N  - a2M \leqslant b2N  - M.(5.5)

Note that (5.4) implies N <a1M . Thus, plugging it into (5.5), we obtain

pL \leqslant b2N  - M \leqslant b2a1M  - M \leqslant b2a1M \leqslant \delta (A,B)2M.

Similarly, (5.5) implies M <b2N . Plugging it into (5.4), we obtain

pK \leqslant a1M  - N \leqslant a1 \cdot b2N  - N = a1b2N \leqslant \delta (A,B)2N.

Hence

K \leqslant \delta (A0,B0)
2N/p and L\leqslant \delta (A0,B0)

2M/p.(5.6)

Now, when we merge every vertex in the phantom partition with a vertex in the
real partition, the bound L\leqslant \delta (A0,B0)

2M/p tells us that we can do it in such a way
that every vertex in U0 is merged with at most \delta (A0,B0)

2/p vertices in U1. Likewise,
the bound K \leqslant \delta (A0,B0)

2N/p tells us that we can do the merging in such a way
that each vertex in V0 is merged with at most \delta (A0,B0)

2/p vertices in V1. After
this merging we obtain an almost A0| B0-biregular graph G = (U0, V0,E1,E2) with
size M | N . Again the almost is because it is possible that there are parallel edges
between two vertices in G. The bounds above have controlled the number of parallel
edges that we need to worry about. We again perform the edge swapping to get rid
of the parallel edges without affecting the degree of each vertex. Note that after the
merging the total degree of each vertex increases by \delta (A0,B0)

2, since the degree of
every vertex in U1 \cup V1 is p. The requirement that M | N is extra-big-enough ensures
that we have enough edges after the merging that we can perform the needed edge
swapping to get rid of \delta (A0,B0)

2 parallel edges.

5.3.2. Proof of Lemma 5.2 for extra-big-enough sizes. We now give the
general construction for extra-big-enough sizes, extrapolating from the idea in the
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914 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

prior example. For simple degree matrices A and B with t rows, consider the formula
\Psi 2

A| B(\=x, \=y) given by

\exists z1,1 \cdot \cdot \cdot \exists z1,t \exists z2,1 \cdot \cdot \cdot \exists z2,t

offset(A) \cdot \=xT +

\left(   \alpha 1pz1,1
...

\alpha tpz1,t

\right)   = offset(B) \cdot \=yT +

\left(   \beta 1pz2,1...
\beta tpz2,t

\right)   ,(5.7)

where \alpha i = 1 if row i in A consists of periodic entries and is 0 otherwise, and similarly
\beta i = 1 if row i in B consists of periodic entries and is 0 otherwise.

This is again an edge counting equality, with the p multiples of z1,i and of z2,i
representing additional edges due to the periodic factors. We can see that \Psi 1

A| B(\=x, \=y) is
a special case of it where all the constants \alpha 1, . . . , \alpha t,\beta 1, . . . , \beta t are zero. We will show
that \Psi 2

A| B(\=x, \=y) captures all possible extra-big-enough sizes \=M | \=N of A| B-biregular
graphs, as formally stated in Lemma 5.9.

Lemma 5.9. For each pair of simple degree matrices A, B and for each pair of size
vectors \=M , \=N such that \=M | \=N is extra-big-enough for A| B, the formula \Psi 2

A| B(
\=M, \=N)

holds in \scrN if and only if there is an A| B-biregular graph with size \=M | \=N .

Proof. Let A and B be simple degree matrices with t rows. Let \=M | \=N be extra-
big-enough for A| B.

The if direction is just an edge counting equation for each color. Suppose there
is an A| B-biregular graph G= (U,V,E1, . . . ,Et) with size \=M | \=N . For each i \in [t], the
number of Ei-edges is the sum of Ei-degrees of vertices in U which is offset(A1,\ast )\cdot \=M+
\alpha ipz1,i for some integer z1,i \geqslant 0. This, of course, must equal the sum of Ei-degrees
of vertices in V , and this is offset(B1,\ast ) \cdot \=N + \beta ipz2,i for some integer z2,i \geqslant 0. Thus,
\Psi 2

A| B(
\=M, \=N) holds.

We now prove the only if direction. Suppose \Psi 2
A| B(

\=M, \=N) holds in \scrN . Abusing
notation as before, we denote the values assigned to the variables zi,j 's by the variables
zi,j 's themselves.

We are going to construct an A| B-biregular graph with size \=M | \=N . There are two
cases---analogous to Cases (a) and (b) in subsection 5.3.1.

Case 1: \alpha iz1,i \geqslant \beta iz2,i for every i\in [t].
This case is analogous to scenarios (S2) and (S3) in the 1-color case, where we

first ``move a multiple of the period entries to one side"" (S3) and ``create a phan-
tom partition for the period, then merge"" (S2). It is also analogous to case (a) in
Lemma 5.8. First, as in (S3), we move all the multiple of the period entries to one
side---that is, rewrite (5.7) as

offset(A) \cdot \=MT +

\left(   (\alpha 1z1,1  - \beta 1z2,1)p
...

(\alpha tz1,t  - \beta tz2,t)p

\right)   = offset(B) \cdot \=NT .

We further rewrite the left-hand side as

(offset(A), pIt) \cdot 

\left(     
\=MT

\alpha 1z1,1  - \beta 1z2,1
...

\alpha tz1,t  - \beta tz2,t

\right)     = offset(B) \cdot \=NT .
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TWO VARIABLE LOGIC WITH U.P. COUNTING 915

Recall that It is the identity matrix with size t\times t and that (offset(A), pIt) denotes
the matrix where the first sequence of columns are offset(A) and the next sequence
of columns are pIt. Intuitively, the submatrix pIt represents p phantom partitions,
each containing vertices whose Ei-degree is p on exactly one color i, with the other
degrees being 0. The vector (\alpha 1z1,1  - \beta 1z2,1, . . . , \alpha tz1,t  - \beta tz2,t) represents the sizes
of these phantom partitions. Note that this is similar to (S2) in the 1-color case in
Lemma 4.4, except that now we have one phantom partition for each color.

Let C = (offset(A), pIt) and \=K = (\alpha 1z1,1  - \beta 1z2,1, . . . , \alpha tz1,t  - \beta tz2,t). Since \=M | \=N
is extra-big-enough for A| B, ( \=M, \=K)| \=N is big-enough for C| offset(B).

Note that C and offset(B) contain only fixed entries. By Lemma 5.6, there is an
(offset(A), pIt)| offset(B)-biregular graph G= (U,V,E1, . . . ,Et) with size ( \=M, \=K)| \=N .

Let U =U1 \uplus \cdot \cdot \cdot \uplus Um \uplus W1 \uplus \cdot \cdot \cdot \uplus Wt be its witness partition---that is, for every
i\in [t]

\bullet for every j \in [m], the Ei-degree of every vertex in Uj is offset(Ai,j), and
| Uj | =Mj ;

\bullet the Ei-degree of every vertex in Wi is p and | Wi| = \alpha iz1,i  - \beta iz2,i, and for
every i\prime \not = i, the Ei\prime -degree of every vertex in Wi is 0.

Here we actually ``create phantom partitions W1, . . . ,Wt for the periods.""
Observe that if Wi \not = \emptyset , i.e., \alpha iz1,i  - \beta iz2,i \not = 0, then \alpha i \not = 0. Since A is a simple

matrix, its row i consists of only periodic entries, hence \| \=MT \| per(Ai,\ast ) = \| \=MT \| . Since
the sizes are extra-big-enough, we have | U1 \uplus \cdot \cdot \cdot \uplus Um| = \| \=MT \| \geqslant \delta (A,B)2 +1, where
\delta (A,B) = max(\| offset(A)\| ,\| offset(B)\| , p). For such an i, we are going to merge
vertices in Wi with vertices in U1 \uplus \cdot \cdot \cdot \uplus Um---analogously to Lemma 4.4.

Let w be a vertex in Wi, where Wj \not = \emptyset . The number of vertices in G reachable
by w in distance 2 (with any edges) is at most \delta (A,B)2. Since | U1\uplus \cdot \cdot \cdot \uplus Um| \geqslant \delta 2+1,
there is a vertex u \in U1 \uplus \cdot \cdot \cdot \uplus Um which is not reachable from w in distance 2. We
can merge w with u. We perform such merging for every vertex in Wi. Since the
Ei-degree of every vertex in Wi is p, and the Ei\prime -degree of vertices in Wi is 0, for
every i\prime \not = i, such merging only increases the Ei-degree of a vertex in U by p. We
continue in this way for every i where Wi \not = \emptyset , resulting in an A| B-biregular graph
with size \=M | \=N .

The case where \beta iz2,i \geqslant \alpha iz1,i, for every i\in [t], can be handled symmetrically.
Case 2: There are i, i\prime \in [t] such that \alpha iz1,i >\beta iz2,i and \alpha i\prime z1,i\prime <\beta i\prime z2,i\prime .
This case is analogous to case (b) in Lemma 5.8. Let \Gamma 1 be the set of indexes i

such that \alpha iz1,i >\beta iz2,i and \Gamma 2 be the set of indexes i such that \alpha iz1,i <\beta iz2,i. Since
A and B are simple matrices, this means

\bullet for every i\in \Gamma 1, \alpha i \not = 0, i.e., row i in A consists of only periodic entries;
\bullet likewise, for every i \in \Gamma 2, \beta i \not = 0, i.e., row i in B consists of only periodic

entries.
First, we can rewrite (5.7) as

offset(A) \cdot \=MT +

\left(   pK1

...
pKt

\right)   = offset(B) \cdot \=NT +

\left(   pL1

...
pLt

\right)   ,

where each Ki and Li is defined as

Ki :=

\biggl\{ 
\alpha iz1,i  - \beta iz2,i if i\in \Gamma 1,
0 if i /\in \Gamma 1,

Li :=

\biggl\{ 
\beta iz2,i  - \alpha iz1,i if i\in \Gamma 2,
0 if i /\in \Gamma 2.
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916 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

We can further rewrite the formula:

(offset(A), pIt) \cdot 

\left(     
\=MT

K1

...
Kt

\right)     = (offset(B), pIt) \cdot 

\left(     
\=NT

L1

...
Lt

\right)     .(5.8)

In the following we let C = (offset(A), pIt) and D = (offset(B), pIt). We also let
\=K = (K1, . . . ,Kt) and \=L= (L1, . . . ,Lt). Note that since \=M | \=N is extra-big-enough for
A| B, ( \=M, \=K)| ( \=N, \=L) is big-enough for C| D. By Lemma 5.6, there is C| D-biregular
graph G= (U,V,E1, . . . ,Et) with size ( \=M, \=K)| ( \=N, \=L). We let U = U0,1 \uplus \cdot \cdot \cdot \uplus U0,m \uplus 
U1,1 \uplus \cdot \cdot \cdot \uplus U1,t and V = V0,1 \uplus \cdot \cdot \cdot \uplus V0,n \uplus V1,1 \uplus \cdot \cdot \cdot \uplus V1,t be the witness partition,
where

\bullet \=M = (| U0,1| , . . . , | U0,m| ) and \=K = (| U1,1| , . . . , | U1,t| ), and
\bullet \=N = (| V0,1| , . . . , | V0,n| ) and \=L= (| V1,1| , . . . , | V1,t| ).

The partitions U1,1, . . . ,U1,t, V1,1, . . . , V1,t are the phantom partitions whose vertices
are to be merged with the vertices in the real partitions U0,1, . . . ,U0,m, V0,1, . . . , V0,n.

Similarly to case (b) in Lemma 5.8, we can bound the value of each Ki and Li.
For simplicity, we may first assume the following assumptions (a1) and (a2) hold.

(a1) For every i\in \Gamma 1, Ai,\ast does not contain a 0+p entry or, equivalently, offset(Ai,\ast )
does not contain a zero entry.

(a2) Likewise, for every i\in \Gamma 2, Bi,\ast does not contain a 0+p entry.
Note that for every i\in \Gamma 1 we have

0< pKi = p(\alpha iz1,i  - \beta iz2,i) = offset(Bi,\ast ) \cdot \=NT  - offset(Ai,\ast ) \cdot \=MT(5.9)

\leqslant \delta (A,B)\| \=NT \|  - \| \=MT \| .

In the last inequality we use the assumption that offset(Ai,\ast ) does not contain a 0
entry. Similarly, for every i\in \Gamma 2 we have

0< pLi = p(\beta iz2,i  - \alpha iz1,i)\leqslant \delta (A,B)\| \=MT \|  - \| \=NT \| .(5.10)

From (5.10), we obtain \| \=NT \| \leqslant \delta (A,B)\| \=MT \| . If we plug this into (5.9), we obtain
that, for every i\in \Gamma 1,

pKi \leqslant \delta (A,B)2\| \=MT \|  - \| \=MT \| \leqslant \delta (A,B)2\| \=MT \| .(5.11)

Symmetrically, for every i\in \Gamma 2, we have

pLi \leqslant \delta (A,B)2\| \=NT \| .(5.12)

Inequalities (5.11) state that, for every i\in \Gamma 1, when performing the merging between
vertices in the phantom partition U1,i and the real partitions U0,1 \uplus \cdot \cdot \cdot \uplus U0,m, we
can do so in such a way that every vertex in the real partition is merged with at
most \delta (A,B)2/p vertices in the phantom partition. Likewise, (5.11) states similarly
for i\in \Gamma 2 for the merging between vertices in the phantom partitions V1,i and the real
partitions V0,1 \uplus \cdot \cdot \cdot \uplus V0,m.

Now we reason as in the illustrative case. After the merging, we obtain an almost
A| B-biregular graph with size \=M | \=N . As in the example, almost is because it is possible
that there are parallel edges between two vertices in G and the established bounds
above have controlled the number of parallel edges that we need to worry about. After
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TWO VARIABLE LOGIC WITH U.P. COUNTING 917

the merging the total degree of each vertex increases by t\delta (A0,B0)
2. We perform the

edge swapping to get rid of the parallel edges without affecting the degree of each
vertex. The requirement that \=M | \=N is extra-big-enough ensures that we have enough
edges to perform the edge swapping. This completes the proof for case 2 when the
assumptions (a1) and (a2) hold.

Now we consider the case when at least one of the assumptions (a1) or (a2) does
not hold. The main idea is to rewrite the 0+p entries in A and B as p+p in such a
way that the bounds in (5.11) and (5.12) still hold.

First, we rewrite (5.8),

(offset(A\prime ), pIt) \cdot 

\left(     
\=MT

K \prime 
1
...
K \prime 

t

\right)     = (offset(B\prime ), pIt) \cdot 

\left(     
\=NT

L\prime 
1
...
L\prime 
t

\right)     ,

where the matrix A\prime and the integers K \prime 
1, . . . ,K

\prime 
t are

(1) for every i /\in \Gamma 1, we let A\prime 
i,\ast =Ai,\ast and K \prime 

i =Ki;
(2) for every i \in \Gamma 1 such that Ai,\ast does not contain 0+p entries, the row A\prime 

i,\ast is
Ai,\ast and K \prime 

i =Ki;
(3) for every i\in \Gamma 1 such thatAi,\ast contains 0

+p entries, we letX = \{ j :Ai,j = 0+p\} ;
moreover,
(3.a) if Ki < \| \=MT \| X , then A\prime 

i,\ast =Ai,\ast and K \prime 
i =Ki, and

(3.b) if Ki \geqslant \| \=MT \| X , then A\prime 
i,\ast is obtained from Ai,\ast by changing every 0+p

entry with p+p and K \prime 
i =Ki  - \| \=MT \| X .

The matrix B\prime and the integers L\prime 
1, . . . ,L

\prime 
t are defined in a similar manner.

(4) For every i /\in \Gamma 2, we let B\prime 
i,\ast =Bi,\ast and L\prime 

i =Li.
(5) For every i \in \Gamma 2 such that Bi,\ast does not contain 0+p entries, the row B\prime 

i,\ast is
Bi,\ast and L\prime 

i =Li.
(6) For every i \in \Gamma 2 such that Bi,\ast contains 0+p entries, we let X = \{ j : Bi,j =

0+p\} ; moreover,
(6.a) if Li < \| \=NT \| X , then B\prime 

i,\ast =Bi,\ast and L\prime 
i =Li, and

(6.b) if Li \geqslant \| \=NT \| X , then B\prime 
i,\ast is obtained from Bi,\ast by changing every 0+p

entry with p+p and L\prime 
i =Li  - \| \=NT \| X .

Note that the only difference between A and A\prime , and between B and B\prime , is in (3.b)
and (6.b), respectively, where some 0+p entries are changed into p+p. Thus, an A\prime | B\prime -
biregular graph is also an A| B-biregular graph.

Performing a similar calculation as in (5.9)--(5.12), we can show that
\bullet for every i\in \Gamma 1, K

\prime 
i \leqslant \delta (A,B)2\| \=MT \| /p;

\bullet for every i\in \Gamma 2, L
\prime 
i \leqslant \delta (A,B)2\| \=NT \| /p.

The construction of an A\prime | B\prime -biregular graph with size \=M | \=N can be done almost
verbatim as above.

Remark 5.10. It is only in case 2 in the proof of Lemma 5.9 that we require the
quantity

max(\| \=MT \| nz(Ai,\ast ),\| \=NT \| nz(Bi,\ast )),

which is precisely the number of vertices with nonzero Ei-degree in an A| B-biregular
graph of size \=M | \=N , to be at least quartic in \delta (A,B), and not quadratic as in sec-
tion 4. This is because the total degree of each vertex increases by at most t\delta (A,B)2

after the merging between the vertices in the phantom partitions and real partitions.
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918 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Thus, we require that the number of edges is at least quartic in \delta (A,B) to ensure there
are enough edges to perform edge swapping to get rid of the parallel edges. Note also
that the restriction of A and B to simple matrices allows us to merge every vertex
in the phantom partition with any vertex in the real partition. Thus we can perform
the merging in such a way that the total degree of each vertex in the real partition
increases by at most t\delta (A,B)2.

5.4. Encoding of not big/extra-big-enough components for simple ma-
trices. Lemma 5.9 gives a formula that captures the existence of biregular graphs for
extra-big-enough sizes for simple degree matrices. We now turn to sizes that are not
big/extra-big-enough. Here we will use the same idea of fixed size encoding as in the
1-color case.

Note that a ``not-extra-big-enough size"" means that one of the conditions (a)--(c)
in Definition 5.4 is violated and thus some of the entries in the size vectors \=M, \=N
are already fixed. For example, if condition (a) is violated, then max(\| \=MT \| nz(Ai,\ast ),
\| \=NT \| nz(Bi,\ast )) is between 1 and 8t2\delta (A,B)4 for some i \in [t]. So in this case we can
fix the values of \| \=MT \| nz(Ai,\ast ) and \| \=NT \| nz(Bi,\ast ) as some r1 and r2, where r1, r2 are
in-between 1 and 8t2\delta (A,B)4. As in the 1-color case (Lemma 4.7), the idea will be
that a fixed number of nonzero degree vertices in a graph can be encoded as formulas,
along the lines of subsection 4.1.3.

We detail the formula construction for the case where for some color, condition
(a) is violated, but conditions (b) and (c) hold. All the other cases can be handled
in a similar manner. We fix degree matrices A and B with t rows, and let m and n
be the number of columns in A and B. For simplicity, we focus on the case where
the color where (a) is violated is the tth row. For integers r1, r2 \geqslant 0, we define a
formula \Phi r1,r2

A| B (\=x, \=y) that captures precisely the sizes \=M | \=N of A| B-biregular graph

where \| \=MT \| nz(At,\ast ) = r1 and \| \=NT \| nz(Bt,\ast ) = r2. The construction is by induction on
r1 + r2 and the number of rows in the degree matrices A and B.

\bullet When the number of rows in A,B is 1, the formula \Phi i,r1,r2
A| B (\=x, \=y) simply enu-

merates all possible sizes of A| B-biregular graphs.
Such an enumeration is possible since the number of vertices with nonzero
degree on the left=hand side is fixed to r1, and the number of vertices with
nonzero degree on the right-hand side is fixed to r2.

\bullet If the ith row in both A and B contains periodic entries, the formula
\Phi i,r1,r2

A| B (\=x, \=y) simply enumerates all possible sizes of A| B-biregular graphs,
where r1 is the number of vertices on the left-hand side and r2 is the number
of vertices on the right-hand side.
Here it is useful to recall that A (resp., B) is a simple matrix, hence either
the entries in A (resp., B) are all fixed entries or are all periodic entries.

\bullet When r1 + r2 = 0, we get the formula

\Phi r1,r2
A| B (\=x, \=y) := \Phi \~A| \~B(\=x0, \=y0) \wedge \| \=xT \| nz(At,\ast ) = 0 \wedge \| \=yT \| nz(Bt,\ast ) = 0,

where \~A is the matrix A without the tth row and without the columns in
nz(At,\ast ), \~B is the matrix B without the tth row and without the columns in
nz(Bt,\ast ), and \=x0 and \=y0 are the vectors \=x and \=y without the components in
nz(At,\ast ) and nz(Bt,\ast ), respectively.
The purpose of the formula \Phi \~A| \~B(\=x0, \=y0) is to capture all possible sizes of
\~A| \~B-biregular graphs. Formally, it is defined as

\Psi 2
\~A| \~B(\=x0, \=y0) \vee \Theta \~A| \~B(\=x0, \=y0),
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TWO VARIABLE LOGIC WITH U.P. COUNTING 919

where \Psi 2
\~A| \~B(\=x0, \=y0) captures all the extra-big-enough sizes of \~A| \~B-biregular

graphs as defined in subsection 5.3 and \Theta \~A| \~B(\=x0, \=y0) captures all the not-

extra-big-enough sizes of \~A| \~B-biregular graphs. Note that the number of rows
in \~A| \~B is now t - 1, hence the formula \Theta \~A| \~B(\=x0, \=y0) can be defined inductively.

The intuition behind the matrices \~A and \~B is that, since \| \=xT \| nz(At,\ast ) = r1 = 0
and \| \=yT \| nz(Bt,\ast ) = r2 = 0, we can ignore the color t, i.e., by removing the tth
row in A and B and all the corresponding columns in nz(At,\ast ) and nz(Bt,\ast ).

\bullet When r1 + r2 \geqslant 1, at least one of r1 or r2 is bigger than or equal to 1.
When r1 \geqslant 1, we let

\Phi r1,r2
A| B (\=x, \=y)

:= \exists s1 \cdot \cdot \cdot \exists st \exists \=z0\exists \=z1 \cdot \cdot \cdot \exists \=zt

\bigvee 
j\in nz(At,\ast )

\left(   (x1,j \not = 0) \wedge \=y=
\sum t

\ell =0 \=z\ell 
\wedge 
\bigwedge t

\ell =1 \| \=zT\ell \| = offset(A\ell ,j) + \alpha \ell \cdot p \cdot s\ell 
\wedge \Phi r1 - 1,r2

A| (B,B - J1,...,B - Jt)
(\=x - ej , \=z0, \=z1, . . . , \=zt)

\right)   ,

where each \alpha \ell is in \{ 0,1\} with \alpha \ell = 1 if and only if A\ell ,j is a periodic entry;
each J\ell is a matrix with size (t\times m), where row \ell consists of all 1 entries and
all the other rows have only 0 entries.
When r2 \geqslant 1, the formula can be defined symmetrically with the roles of A, \=x
and B, \=y being swapped.

The following lemma states the correctness of the formula constructed above.

Lemma 5.11. For every pair of simple degree matrices A,B with t rows, for all
integers r1, r2 \geqslant 0, for all size vectors \=M, \=N , the formula \Phi r1,r2

A| B ( \=M, \=N) holds in \scrN if

and only if there is an A| B-biregular graph with size \=M | \=N , where \| \=MT \| nz(At,\ast ) = r1
and \| \=NT \| nz(Bt,\ast ) = r2.

The proof of Lemma 5.11 is a straightforward generalization of Lemma 4.8, hence
we omit it.

The case where (b) or (c) is violated for some color i \in [t] can be treated in a
similar manner. Note that in the case when both (b) and (c) are violated, i.e., 1 \leqslant 
\| \=MT \| per(Ai1,\ast ) \leqslant \delta (A,B)2 and 1\leqslant \| \=NT \| per(Bi2,\ast ) \leqslant \delta (A,B)2 for some i1, i2 \in [t], the
number of vertices is fixed to some r in-between 1 and 2\delta (A,B)2, since perAi1,\ast 

= [m]
and per(Bi2,\ast ) = [n] due to A and B being simple matrices. Thus, in this case all
possible sizes of A| B-biregular graphs can simply be enumerated.

Remark 5.12. The following observations about the formula will be useful in
our complexity analysis later on. By pulling out the disjunction, we can rewrite the
formula \Phi r1,r2

A| B (\=x, \=y) as a disjunction
\bigvee 

i\varphi i conjoined with \Phi \~A| \~B(\=x0, \=y0), where each

\varphi i is a conjunction of O(t(r1 + r2)) (in)equations. Since r1, r2 ranges between 1 and
max(8t2\delta (A,B)4, t\delta (A,B)) = 8t2\delta (A,B)4, each \varphi i is a conjunction of O(t3\delta (A,B)4)
(in)equations conjoined with \Phi \~A| \~B(\=x0, \=y). It is useful to recall that \~A| \~B now have one
less row than A| B.

By straightforward induction on the number of rows t, we observe that the formula
\Phi r1,r2

A| B (\=x, \=y) can be written as a disjunction
\bigvee 

i\varphi i, where each \varphi i is a conjunction of

O(t4\delta (A,B)4) (in)equations.

5.5. Proof of Lemma 5.2. To wrap up this section, for simple matrices A and
B, we define the formula \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) required in Lemma 5.2 to characterize all the
possible sizes of A| B-biregular graph, without the completeness requirement,
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920 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) :=\Psi 2
A| B(\=x, \=y) \vee 

\bigvee 
i\in [\ell ]

\Phi i(\=x, \=y),

where \Psi 2
A| B(\=x, \=y) is defined in (5.7) to deal with the big-enough sizes, while the

disjunction
\bigvee 

i\in [\ell ]\Phi i(\=x, \=y) deals with the not-extra-big-enough sizes as defined in sub-
section 5.4. Here we assume an enumeration of all the formulas \Phi 1(\=x, \=y), . . . ,\Phi \ell (\=x, \=y)
that deal with the not-extra-big-enough sizes. The correctness of the construction
follows immediately from Lemmas 5.9 and 5.11.

Remark 5.13. Let t be the number of rows in matrices A and B and let m and n
be the number of columns in A and B, respectively. By Remark 5.12, each \Phi i(\=x, \=y)
is a disjunction of conjunctions of O(t4\delta (A,B)4) (in)equations. Since \Psi 2

A| B(\=x, \=y) is a
conjunction of t equations, the formula \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) can be written as a disjunction\bigvee 

i\varphi i, where each \varphi i is a conjunction of O(t4\delta (A,B)4) (in)equations.

6. Proof of Theorem 3.2 for the case of simple matrices with the com-
pleteness requirement being enforced. We will now consider the formula defining
possible partition sizes, still restricting to simple biregular graphs, but now enforcing
the completeness restriction. This will be done via reduction to the case where the
completeness restriction has not been enforced.

We introduce a further restriction on the matrices that will be useful.

Definition 6.1. For a pair of simple matrices A| B (with the same number of
rows), we say that A| B is a good pair if there is i such that row i is periodic in both
A and B.

Remark 6.2. Note that if A| B is not a good pair, then complete A| B-biregular
graphs can only have up to 2\delta (A,B) vertices. Indeed, suppose G= (U,V,E1, . . . ,Et)
is a complete A| B-biregular graph. Since A| B is not a good pair, for every i \in [t],
the number of edges in Ei is at most \delta (A,B)| U | or \delta (A,B)| V | . Thus,

\sum 
i\in [t] | Ei| is at

most \delta (A,B)(| U | + | V | ). On the other hand, the fact that G is complete implies that\sum 
i\in [t] | Ei| = | U | | V | which is strictly bigger than \delta (A,B)(| U | + | V | ) when | U | + | V | >

2\delta (A,B). So, when A| B is not a good pair, to capture all possible sizes of complete
A| B-biregular graphs, we simply write a formula that enumerates all possible \=M | \=N ,
where \| \=MT \| + \| \=NT \| \leqslant 2\delta (A,B).

So it suffices to define the formula that captures all possible sizes of complete
(finite) A| B-biregular graphs where A and B are both simple matrices and A| B is a
good pair. Let \=x= (x1, . . . , xm) and \=y = (y1, . . . , yn). Let A \in \BbbN t\times m

+p and B \in \BbbN t\times n
+p be

simple matrices such that A| B is a good pair. Let \xi A| B(\=x, \=y) be the formula

\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y)(6.1)

\wedge 
\bigwedge 

j\in [m]

xj \not = 0 \rightarrow \exists z \| \=yT \| = \| offset(A\ast ,j)\| + pz(6.2)

\wedge 
\bigwedge 

j\in [n]

yj \not = 0 \rightarrow \exists z \| \=xT \| = \| offset(B\ast ,j)\| + pz.(6.3)

Here \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) is the formula characterizing the situation without the complete-
ness requirement.

Intuitively, (6.2) states that the number of vertices on the right-hand side must
equal the total degree of the vertices on the left-hand side. Likewise, (6.3) states that
the number of vertices on the left-hand side must equal the total degree of the vertices
on the right-hand side.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 921

Lemma 6.3. For every pair of simple matrices A and B such that A| B is a good
pair, for every pair of size vectors \=M and \=N , the formula \xi A| B( \=M, \=N) holds in \scrN 
exactly when there is a complete A| B-biregular graph of size \=M | \=N .

Proof. That \xi A| B( \=M, \=N) is a necessary condition for the existence of a com-
plete A| B-biregular graph is straightforward. This follows from the fact that if
G = (U,V,E1, . . . ,Et) is a complete A| B-biregular graph then the sum of all Ei-
degrees of every vertex in U must equal | V | and, likewise, the sum of all Ei-degrees
of every vertex in V must equal | U | .

Now we show that it is also a sufficient condition. Suppose \xi A| B( \=M, \=N) holds
in \scrN . Thus, \sansb \sansi \sansr \sanse \sansg A| B( \=M, \=N) holds, and by Lemma 5.2, there is a (not necessarily
complete) A| B-biregular graph G = (U,V,E1, . . . ,Et) with size \=M | \=N . We will show
how to make G complete.

Let U =U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn be the witness partition. Since A| B
is a good pair, there is i0 such that row i0 is periodic in both A and B. Now, for
every (u, v) /\in E1 \cup \cdot \cdot \cdot \cup Et, we define (u, v) to be in Ei0 . Obviously, after adding such
Ei0-edges, the graph G becomes complete. We argue that G is still A| B-biregular by
showing that

(a) for every j \in [m], for every vertex w \in Uj , the Ei0-degree of w increases by a
multiple of p;

(b) for every j \in [n], for every vertex w \in Vj , the Ei0-degree of w increases by a
multiple of p.

We prove (a), fixing w \in Uj . The Ei0-degree of w increases by

| V |  - 
\sum 
i\in [t]

degEi
(w).

Note that (6.2) forces | V | to be

| V | = \| offset(A\ast ,j)\| +p = \| offset(A\ast ,j)\| + (some multiple of p).

On the other hand, we also have\sum 
i\in [t]

degEi
(w) =

\sum 
i\in [t]

Ai,j = \| offset(A\ast ,j)\| + (some multiple of p).

Here it is useful to recall that row i0 in A contains periodic entries, hence the additional
term ``some multiple of p."" Thus, the quantity | V |  - 

\sum 
i\in [t] degEi

(w) is a multiple of
p, and therefore the Ei0 -degree of w only increases by a multiple of p. This does not
violate the A| B-biregularity condition.

Part (b) can be proven in a similar manner to (6.3). This completes our proof of
Lemma 6.3.

Remark 6.4. We will again make some further observations that will be important
only for the complexity analysis, which will be detailed in section 8. For each j \in [m],
let aj = \| offset(\ast , j)T \| . We first rewrite (6.2) as follows:

\bigvee 
j1\in [m]

\Biggl( 
\exists z \| \=yT \| = aj1 + pz \wedge xj1 \not = 0 \wedge 

\bigwedge 
j2\in [m] s.t. aj2 \not \equiv aj1 mod p

xj2 = 0

\Biggr) 
.

Indeed, if xj1 , xj2 \not = 0, then \| \=yT \| = a+p
j1

and \| \=yT \| = a+p
j2

, which implies aj1 \equiv aj2 mod
p. Therefore, if xj1 \not = 0, then xj2 = 0 whenever aj2 \not \equiv aj1 mod p. We also rewrite (6.3)
in a similar manner.
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922 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Note that (6.2) yields O(m) equalities, while the rewriting above transforms it
into a disjunction of O(1) (in)equations.7 By Remark 5.13, the formula \xi A| B(\=x, \=y) is
a disjunction of conjunctions of O(t4\delta (A,B)4) (in)equations, where t is the number
of rows in matrices A and B.

To wrap up section 6, we define the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) for simple matrices
A and B as follows,

\sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) :=

\biggl\{ 
\xi A| B(\=x, \=y) if A| B is a good pair,\bigvee 

i \phi i(\=x, \=y) if A| B is not a good pair,
(6.4)

where \xi A| B(\=x, \=y) is defined in (6.1)--(6.3) when A| B is a good pair and the disjunction\bigvee 
i \phi i(\=x, \=y) enumerates all possible sizes \=M | \=N when A| B is not a good pair. Recall

that by Remark 6.2, when A| B is not a good pair, complete A| B-biregular graphs
can only have sizes \=M | \=N , where \| \=MT \| + \| \=NT \| \leqslant 2\delta (A,B). Since there are only
finitely many such sizes, they can be enumerated. The correctness of the formula
\sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) follows immediately from Lemma 6.3 and Remark 6.2, as stated for-
mally in Lemma 6.5.

Lemma 6.5. For every pair of simple matrices A and B and for every pair of size
vectors \=M and \=N , the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B( \=M, \=N) holds in \scrN exactly when there is a
complete A| B-biregular graph of size \=M | \=N .

7. Proof of Theorems 3.2 and 3.3. In this section we will present the proof
of Theorems 3.2 and 3.3. Recall that Theorem 3.2 states that for all arbitrary degree
matrices A and B, we can effectively construct a Presburger formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y)
that captures all possible sizes of complete A| B-biregular graphs. Theorem 3.3 is the
analog for the directed graphs.

In section 6 we showed how to construct Presburger formulas that capture all
possible sizes of complete simple A| B-biregular graphs, i.e., where the degree matrices
A and B are simple matrices. In this section we will show how to reduce the nonsimple
matrices to simple matrices for biregular graphs. We divide this section into three
subsections. We begin with an example that shows the main idea in section 7.1. In
section 7.2 we present the general reduction from nonsimple biregular graphs to simple
biregular graphs. Finally, in section 7.3 we deal with the regular digraphs.

7.1. A special case illustrating the reduction. Consider the degree matrices
A0 = (a1, a

+p
2 ) and B0 = (b1, b

+p
2 ), where a1, a2, b1, b2 are all nonzero integers. Note

that this is just the 1-color case, which is already handled in section 4. The choice of 1
color is for the sake of simplicity. Obviously, they are not simple matrices, since each
row contains both fixed and periodic entries. We will show that every A0| B0-biregular
graph can be viewed as a collection of four simple biregular graphs, as stated formally
in Theorem 7.1. Note that this example has only one color, and we already know
how to construct the required Presburger formula from section 4. The purpose of this
section is only to illustrate the reduction from nonsimple matrices to simple matrices.

The main idea is as follows. Suppose we have A0| B0-biregular graph G= (U,V,E)
with witness partition U =U1\uplus U2 and V = V1\uplus V2. We will decompose the graph into
4 induced bipartite subgraphs, each representing the restriction to one partition on

7Here we do not count equations of the form x= 0 since such a variable x can be ignored during
the computation, thus, becomes negligible in the complexity analysis.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 923

the left and one on the right.8 We will show below that each such subgraph satisfies
a biregularity condition:

\bullet The induced subgraphG[U1\cup V1] is a (0,1, . . . , a1)| (0,1, . . . , b1)-biregular graph.
\bullet The induced subgraph G[U1 \cup V2] is an (a1, a1  - 1, . . . ,0)| (0+p,1+p, . . . , b+p

2 )-
biregular graph.

\bullet The induced subgraph G[U2 \cup V1] is a (0+p,1+p, . . . , a+p
2 )| (b1, b1  - 1, . . . ,0)-

biregular graph.
\bullet The induced subgraph G[U2 \cup V2] is an (a+p

2 , (a2  - 1)+p, . . . ,0+p)| (b+p
2 , (b2  - 

1)+p, . . . ,0+p)-biregular graph.
Note that the degree matrices involved are all simple matrices. For example, the
degree matrix (0,1, . . . , a1), which has only one row, is simple, since every row contains
only fixed entries. As another example, the degree matrix (0+p,1+p, . . . , a+p

2 ) is also
simple, since every row contains only periodic entries.

We call the decomposition of G into the subgraphs G[U1 \cup V1], G[U1 \cup V2], G[U2 \cup 
V1], and G[U2 \cup V2] the degree-based decomposition of G. We reduce a characterization
of sizes of A0| B0-biregular graphs to a characterization of the sizes of the components
of the decomposition.

Theorem 7.1. For every pair M1,M2 \in \BbbN 2 and every pair N1,N2 \in \BbbN 2, the
following are equivalent.

(a) There is an A0| B0-biregular graph with size (M1,M2)| (N1,N2).
(b) There exist size vectors \=K1 \in \BbbN a1+1, \=K2 \in \BbbN a2+1, \=L1 \in \BbbN b1+1, \=L2 \in \BbbN b2+1

such that \| \=KT
1 \| =M1, \| \=KT

2 \| =M2, \| \=LT
1 \| =N1, and \| \=LT

2 \| =N2 and
\bullet a (0,1, . . . , a1)| (0,1, . . . , b1)-biregular graph with size \=K1| \=L1;
\bullet an (a1, a1  - 1, . . . ,0)| (0+p,1+p, . . . , b+p

2 )-biregular graph with size \=K1| \=L2;
\bullet a (0+p,1+p, . . . , a+p

2 )| (b1, b1  - 1, . . . ,0)-biregular graph with size \=K2| \=L1;
\bullet an (a+p

2 , (a2 - 1)+p, . . . ,0+p)| (b+p
2 , (b2 - 1)+p, . . . ,0+p)-biregular graph with

size \=K2| \=L2,

Note that there can be several vectors \=K1 . . . satisfying the conditions on norms
in the theorem. But the condition on sizes can clearly be described in Presburger
arithmetic, so this allows us to get a Presburger formula for the sizes of an A0| B0-
biregular graph, assuming we can get such a formula for the simple case.

The proof of Theorem 7.1 is conceptually simple, but rather technical. We divide
it into two lemmas: Lemma 7.2 which implies the only if direction and Lemma 7.3
which deals with the if direction. Below we let [0, k] denote the set \{ 0,1, . . . , k\} for an
integer k\geqslant 0.

Lemma 7.2. For every A0| B0-biregular graph G= (U,V,E) with witness partition
U = U1 \uplus U2 and V = V1 \uplus V2, there exist size vectors \=K1 \in \BbbN a1+1, \=K2 \in \BbbN a2+1,
\=L1 \in \BbbN b1+1, and \=L2 \in \BbbN b2+1 such that

1. the induced subgraph G[U1\cup V1] is a (0,1, . . . , a1)| (0,1, . . . , b1)-biregular graph
with size \=K1| \=L1;

2. the induced subgraph G[U1 \cup V2] is an (a1, a1  - 1, . . . ,0)| (0+p,1+p, . . . , b+p
2 )-

biregular graph with size \=K1| \=L2;
3. the induced subgraph G[U2 \cup V1] is a (0+p,1+p, . . . , a+p

2 )| (b1, b1  - 1, . . . ,0)-
biregular graph with size \=K2| \=L1;

4. the induced subgraph G[U2 \cup V2] is an (a+p
2 , (a2  - 1)+p, . . . ,0+p)| (b+p

2 , (b2  - 
1)+p, . . . ,0+p)-biregular graph with size \=K2| \=L2.

8As usual, for a graph G= (V,E) and for a subset S \subseteq V , the notation G[S] denotes the subgraph
induced in G by the set S.
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924 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Proof. Let G= (U,V,E) be a A0| B0-biregular graph with size (M1,M2)| (N1,N2).
Let U =U1 \uplus U2 and V = V1 \uplus V2 be the witness partition, where

\bullet every vertex in U1 has degree a1 and every vertex in U2 has degree a+p
2 ;

\bullet every vertex in V1 has degree b1 and every vertex in U2 has degree b+p
2 .

We partition the set U1 as follows,

U1 = U1,0 \uplus U1,1 \uplus \cdot \cdot \cdot \uplus U1,a1
,

where for each j \in [0, a1], the set U1,j is the set of vertices in U1 with j neighbors in
V1 and (a1  - j) neighbors in V2. See Figure 6 for an illustration. We repartition the
set U2, V1, V2 in a similar manner.

\bullet Let U2 = U2,0 \uplus U2,1 \uplus \cdot \cdot \cdot \uplus U2,a2 , where for each j \in [0, a2], U2,j is the set of
vertices in U2 with j+p neighbors in V1 and (a2  - j)+p neighbors in V2.

\bullet We let V1 = V1,0 \uplus V1,1 \uplus \cdot \cdot \cdot \uplus V1,b1 , where for each j \in [0, b1], V1,j is the set of
vertices in V1 with j neighbors in U1 and (b1  - j) neighbors in U2.

\bullet We let V2 = V2,0 \uplus V2,1 \uplus \cdot \cdot \cdot \uplus V2,b2 , where for each j \in [0, b2], V2,j is the set of
vertices in V2 iwth j+p neighbors in U1 and (b2  - j)+p neighbors in U2.

Now, we let \=K1, \=K2, \=L1, \=L2 as follows:

\=K1 := (| U1,0| , | U1,1| , . . . , | U1,a1
| ), \=K2 := (| U2,0| , | U2,1| , . . . , | U2,a2

| ),
\=L1 := (| V1,0| , | V1,1| , . . . , | V1,b1 | ), \=L2 := (| V2,0| , | V2,1| , . . . , | V2,b2 | ).

To complete the proof of Lemma 7.2, we show
(1) G[U1 \cup V1] is a (0,1, . . . , a1)| (0,1, . . . , b1)-biregular graph with size \=K1| \=L1;
(2) G[U1\cup V2] is an (a1, a1 - 1, . . . ,0)| (0+p,1+p, . . . , b+p

2 )-biregular graph with size
\=K1| \=L2;

U1
U1,0

...

U1,j

...

U1,a1

\mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{s}
\mathrm{o}\mathrm{f} u \mathrm{i}\mathrm{n} V1

j \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}

\mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{s}
\mathrm{o}\mathrm{f} u

\mathrm{i}\mathrm{n}
V
2

a1  - j \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}

u

U2

V1

V2

Fig. 6. An illustration for the proof of Lemma 7.2. G = (U,V,E) is an A0| B0-biregular graph
with U =U1 \uplus U2 and V = V1 \uplus V2 the witness partition. We partition U1 =U1,0 \uplus \cdot \cdot \cdot \uplus U1,a1 , where
for each j \in [0, a1], each vertex u\in U1,j has j neighbors in V1 and (a1 - j) neighbors in V2. Similarly
we partition U2 = U2,0 \uplus \cdot \cdot \cdot \uplus U2,a2 , V1 = V1,0 \uplus \cdot \cdot \cdot \uplus V1,b1 , and V2 = V2,0 \uplus \cdot \cdot \cdot \uplus V2,b2 . Note: color
appears only in the online article.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 925

(3) G[U2 \cup V1] is a (0+p,1+p, . . . , a+p
2 )| (b1, b1  - 1, . . . ,0)-biregular graph with size

\=K2| \=L1;
(4) G[U2 \cup V2] is an (a+p

2 , (a2  - 1)+p, . . . ,0+p)| (b+p
2 , (b2  - 1)+p, . . . ,0+p)-biregular

graph with size \=K2| \=L2.
To prove (1), note that

\bullet for each j1 \in [0, a1], each vertex in U1,j1 has degree j1 in G[U1 \cup V1];
\bullet for each j2 \in [0, b1], each vertex in V1,j2 has degree j2 in G[U1 \cup V1].

Thus, U1 = U1,0 \uplus U1,1 \uplus \cdot \cdot \cdot \uplus U1,a1
and V1 = V1,0 \uplus V1,1 \uplus \cdot \cdot \cdot \uplus V1,b1 is the wit-

ness partition of (0,1, . . . , a1)| (0,1, . . . , b1)-biregularity of G[U1 \cup V1]. Since \=K1 =
(| U1,0| , | U1,1| , . . . , | U1,a1

| ), \=L1 = (| V1,0| , | V1,1| , . . . , | V1,b1 | ), the subgraph G[U1 \cup V1]
has size \=K1| \=L1. The proofs of (2)--(4) are similar. This completes the proof of
Lemma 7.2.

Next, we will show Lemma 7.3 which deals with the if direction of Theorem 7.1.

Lemma 7.3. For all size vectors \=K1 \in \BbbN a1+1, \=K2 \in \BbbN a2+1, \=L1 \in \BbbN b1+1, and
\=L2 \in \BbbN b2+1, if there are

(1) a (0,1, . . . , a1)| (0,1, . . . , b1)-biregular graph with size \=K1| \=L1;
(2) an (a1, a1  - 1, . . . ,0)| (0+p,1+p, . . . , b+p

2 )-biregular graph with size \=K1| \=L2;
(3) a (0+p,1+p, . . . , a+p

2 )| (b1, b1  - 1, . . . ,0)-biregular graph with size \=K2| \=L1;
(4) an (a+p

2 , (a2 - 1)+p, . . . ,0+p)| (b+p
2 , (b2 - 1)+p, . . . ,0+p)-biregular graph with size

\=K2| \=L2,
then there is an A0| B0-biregular graph with size (M1,M2)| (N1,N2), where M1 =
\| \=KT

1 \| , M2 = \| \=KT
2 \| , N1 = \| \=LT

1 \| , and N2 = \| \=LT
2 \| .

Proof. Let \=K1 = (K1,0, . . . ,K1,a1
) \in \BbbN a1+1, \=K2 = (K2,0, . . . ,K2,a2

) \in \BbbN a2+1, \=L1 =
(L1,0, . . . ,L1,b1) \in \BbbN b1+1, \=L2 = (L2,0, . . . ,L2,b2) \in \BbbN b2+1. Let U1,U2, V1, V2 be pairwise
disjoint sets of elements such that

| U1| = \| \=KT
1 \| , | U2| = \| \=KT

2 \| , | V1| = \| \=LT
1 \| , | V2| = \| \=LT

2 \| .

We partition U1,U2, V1, V2 as follows:

U1 := U1,0 \uplus U1,1 \uplus \cdot \cdot \cdot \uplus U1,a1
, where (| U1,0| , | U1,1| , . . . , | U1,a1

| ) = \=K1,

U2 := U2,0 \uplus U2,1 \uplus \cdot \cdot \cdot \uplus U2,a2
, where (| U2,0| , | U2,1| , . . . , | U2,a2

| ) = \=K2,

V1 := V1,0 \uplus V1,1 \uplus \cdot \cdot \cdot \uplus V1,b1 , where (| V1,0| , | V1,1| , . . . , | V1,b1 | ) = \=L1,

V2 := V2,0 \uplus U2,1 \uplus \cdot \cdot \cdot \uplus V2,b2 , where (| V2,0| , | U2,1| , . . . , | V2,b2 | ) = \=L2.

Suppose we have biregular graphs H1,H2,H3,H4, as stated in the hypotheses
(1)--(4):

\bullet H1 is a (0,1, . . . , a1)| (0,1, . . . , b1)-biregular graph with size \=K1| \=L1;
\bullet H2 is an (a1, a1 - 1, . . . ,0)| (0+p,1+p, . . . , b+p

2 )-biregular graph with size \=K1| \=L2;
\bullet H3 is a (0+p,1+p, . . . , a+p

2 )| (b1, b1  - 1 . . . ,0)-biregular graph with size \=K2| \=L1;
\bullet H4 is an (a+p

2 , (a2  - 1)+p . . . ,0+p)| (b+p
2 , (b2  - 1)+p, . . . ,0+p)-biregular graph

with size \=K2| \=L2.
We will combine all these graphs H1,H2,H3,H4 into one A0| B0-biregular graph G
with size (M1,M2)| (N1,N2). See Figure 7 for an illustration. First, we make some
observations.

\bullet Note that H1 is a (0,1, . . . , a1)| (0,1, . . . , b1)-biregular graph with size \=K1| \=L1,
matching the sizes of U1 and V1. So we may assume that U1 is the set of
vertices on the left-hand side, V1 is the set of vertices on the right-hand side.
We can also assume that U1 =U1,0\uplus U1,1\uplus \cdot \cdot \cdot \uplus U1,a1

and V1 = V1,0\uplus V1,1\uplus \cdot \cdot \cdot 
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U1

U2

H1

H
2

H3

H4

V1

V2

Fig. 7. An illustration for the proof of Lemma 7.3. The graph H1 contains only edges between
the vertices in U1 and V1. The graph H2 contains only edges between the vertices in U1 and V2. The
graph H3 contains only edges between the vertices in U2 and V1. The graph H4 contains only edges
between the vertices in U2 and V2. Thus, the sets of edges in H1,H2,H3,H4 are pairwise disjoint.
The graph G obtained by combining all four of them is an A0| B0-biregular graph.

\uplus V1,b1 is the witness partition for (0,1, . . . , a1)| (0,1, . . . , b1)-biregularity ofH1.
Thus H1 = (U1, V1,R1), where R1 is the set of edges.

\bullet In a similar manner, since H2 is an (a1, a1  - 1, . . . ,0)| (0+p,1+p, . . . , b+p
2 )-

biregular graph with size \=K1| \=L2, we may assume that U1 is the set of vertices
on the left-hand side, V2 is the set of vertices on the right-hand side, and that
U1 = U1,0 \uplus U1,1 \uplus \cdot \cdot \cdot \uplus U1,a1 and V2 = V2,0 \uplus V2,1 \uplus \cdot \cdot \cdot \uplus V2,b2 is the witness
partition of (a1, a1  - 1, . . . ,0)| (0+p,1+p, . . . , b+p

2 )-biregularity of H2.
We can thus write H2 = (U1, V2,R2), where R2 is the set of edges. Note that
R1 and R2 are disjoint since R1 contains only edges between vertices in U1

and vertices in V1, whereas R2 contains only edges between vertices in U1

and vertices in V2.
\bullet Analogously to what we observed about H2, since H3 is a (0+p,1+p, . . . , a+p

2 )| 
(b1, b1  - 1, . . . ,0)-biregular graph with size \=K2| \=L1, we may assume that U2 is
the set of vertices on the left side, V1 is the set of vertices on the right side,
and that U2 = U2,0 \uplus U2,1 \uplus \cdot \cdot \cdot \uplus U2,a2

and V1 = V1,0 \uplus V1,1 \uplus \cdot \cdot \cdot \uplus V1,b1 is the
witness partition of (0+p,1+p, . . . , a+p

2 )| (b1, b1  - 1, . . . ,0)-biregularity of H3.
We write H3 = (U2, V1,R3), where R3 is the set of edges and again note that
R1,R2,R3 are pairwise disjoint.

\bullet Finally, since H4 is an (a+p
2 , (a2  - 1)+p . . . ,0+p)| (b+p

2 , (b2  - 1)+p, . . . ,0+p)-
biregular graph with size \=K2| \=L2, we may assume U2 is the set of vertices
on the left side, V2 is the set of vertices on the right, and that U2 = U2,0 \uplus 
U2,1 \uplus \cdot \cdot \cdot \uplus U2,a2 and V2 = V2,0 \uplus V2,1 \uplus \cdot \cdot \cdot \uplus V2,b2 is the witness partition of
(a+p

2 , (a2  - 1)+p, . . . ,0+p)| (b+p
2 , (b2  - 1)+p, . . . ,0+p)-biregularity of H4.

We can thus write H4 = (U2, V2,R4), where R4 is the set of edges and again
note that R1,R2,R3,R4 are pairwise disjoint.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 927

Let G= (U1 \cup U2, V1 \cup V2,E), where E =R1 \cup R2 \cup R3 \cup R4. That is, G is the graph
union of all H1, . . . ,H4. In fact, G[U1 \cup V1] is H1, G[U1 \cup V2] is H2, G[U2 \cup V1] is H3,
and G[U2 \cup V2] is H4.

We will prove that G is an A0| B0-biregular graph with size (M1,M2)| (N1,N2),
where M1 = | U1| , M2 = | U2| , N1 = | V1| , and N2 = | V2| by showing that

(1) every vertex in U1 has degree a1 and every vertex in U2 has degree a+p
2 ; and

(2) every vertex in V1 has degree b1 and every vertex in V2 has degree b+p
2 .

To prove (1), note that:
\bullet Since H1 is a (0,1, . . . , a1)| (0,1, . . . , b1)-biregular graph, for every j \in [0, a1],

every vertex u\in U1,j has degree j in H1.
Since H2 is an (a1, a1 - 1, . . . ,0)| (0+p,1+p, . . . , b+p

2 )-biregular graph, for every
j \in [0, a1], every vertex u\in U1,j has degree (a1  - j) in H2.
Therefore, for each j \in [0, a1], every vertex u\in U1,j has degree j+(a1 - j) = a1
in the graph G.

\bullet Similarly, since H3 is a (0+p,1+p, . . . , a+p
2 )| (b1, b1  - 1, . . . ,0)-biregular graph,

for every j \in [0, a2], every vertex u\in U2,j has degree j+p in H3.
Since H4 is an (a+p

2 , (a2  - 1)+p . . . ,0+p)| (b+p
2 , (b2  - 1)+p, . . . ,0+p)-biregular

graph, for every j \in [0, a2], every vertex u\in U2,j has degree (a2 - j)+p in H4.
Therefore, for every j \in [0, a2], each vertex u \in U2,j has degree j+p + (a2  - 
j)+p = a+p

2 in the graph G.
The proof of (2) is similar.

7.2. The general reduction from nonsimple to simple. We now give the
general process which makes use of the idea above. In this section we will deal directly
with complete biregular graphs. Let A \in \BbbN t\times m

+p and B \in \BbbN t\times n
+p be arbitrary degree

matrices. We will show that every complete A| B-biregular graph can be decomposed
into a collection of complete simple biregular graphs.

The idea is similar to the one in subsection 7.1. Let G = (U,V,E1, . . . ,Et) be a
complete A| B-biregular graph. We let q be the maximal (finite) offset found in A
and B. For each color i \in [t], we call a vertex v an Ei-neighbor of a vertex u, if v is
adjacent to u via an Ei-edge.

Suppose U = U1 \uplus \cdot \cdot \cdot \uplus Un and V = V1 \uplus \cdot \cdot \cdot \uplus Vn is the witness partition of
A| B-biregularity of G. For each j \in [m], we further partition each Uj ,

Uj = Uj,g1 \uplus \cdot \cdot \cdot \uplus Uj,gk ,

where g1, . . . , gk : [t]\times [n] \rightarrow \{ 0,1, . . . , q,0+p,1+p, . . . , q+p\} are functions and for each
color i \in [t], for each \ell \in [k], each vertex u \in Uj,g\ell has g\ell (i,1) Ei-neighbors in the
set V1, g\ell (i,2) Ei-neighbors in the set V2, and so on to g\ell (i, n) Ei-neighbors in the
set Vn. See Figure 8.9 To ensure that each vertex in Uj has Ei-degree Ai,j for every
color i \in [t], we require that g\ell (i,1) + \cdot \cdot \cdot + g\ell (i, n) =Ai,j . Note that if Ai,j is a fixed
entry, then all g\ell (i,1), . . . , g\ell (i, n) are fixed entries. If Ai,j is a periodic entry, then all
g\ell (i,1), . . . , g\ell (i, n) are periodic entries.

In the same way, for each j\prime \in [n], we further partition each set Vj\prime ,

Vj\prime = Vj\prime ,h1
\uplus \cdot \cdot \cdot \uplus Vj\prime ,hk

,

where h1, . . . , hk : [t]\times [m]\rightarrow \{ 0,1, . . . , q,0+p,1+p, . . . , q+p\} are functions and for each
color i\in [t], for each \ell \in [k], every vertex u\in Vj\prime ,h\ell 

has h\ell (i,1) Ei-neighbors in the set

9The partitioning of Uj into Uj,g1 \uplus \cdot \cdot \cdot \uplus Uj,gk is similar to how we partition the set U1 =
U1,0 \uplus \cdot \cdot \cdot \uplus U1,a1 in Lemma 7.2 where for each j \in [0, a1], each vertex in U1,j has j neighbors in the
set V1 and (a1  - j) neighbors in the set V2.
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928 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

U1

...

Uj

...
Un

Uj,g1

...

Uj,gk u

...

Uj,g\ell 

Ei-
\mathrm{n}\mathrm{e}

\mathrm{i}\mathrm{g}\mathrm{h}
\mathrm{b}\mathrm{o}

\mathrm{r}\mathrm{s}
\mathrm{o}\mathrm{f}

u \mathrm{i}\mathrm{n}
V1

gk(i, 1) \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}

E
i -\mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{s} \mathrm{o}\mathrm{f} u

\mathrm{i}\mathrm{n} V
n gk(i, n) \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}

V1

......

Vn

Fig. 8. Suppose G is an A| B-biregular graph with U = U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vm

being the witness partition. We partition Uj according to the functions g1, . . . , gk : [t] \times [n] \rightarrow 
\{ 0,1 . . . , q,0+p,1+p, . . . , q+p\} , where for each \ell \in [k], each vertex in Uj,g\ell has g\ell (i,1) Ei-neighbors
in V1, g\ell (i,2) Ei-neighbors in V2, and so on to g\ell (i, n) Ei-neighbors in Vn. Note: color appears only
in the online article.

U1, h\ell (i,2) Ei-neighbors in the set U2, and so on to h\ell (i,m) Ei-neighbors in the set
Um.

We will show that every complete A| B-biregular graph G with witness partition
U = U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn can be decomposed into complete simple
biregular graphs in the sense that for each j \in [m] and each j\prime \in [n], the induced
subgraph G[Uj \cup Vj\prime ] is a complete simple biregular graph with witness partition
Uj = Uj,g1 \uplus \cdot \cdot \cdot \uplus Uj,gk and Vj\prime = Vj\prime ,h1

\uplus \cdot \cdot \cdot \uplus Vj\prime ,hk
. Such decomposition is also

sufficient to capture all possible complete A| B-biregular graphs. We will formalize
this idea in the next paragraphs.

We first need some terminology.

Definition 7.4. For each j \in [m], we define a behavior function of column j in
A to be a function g : [t]\times [n]\rightarrow \{ 0,1, . . . , q,0+p,1+p, . . . , q+p\} such that

\bullet A\ast ,j =

\left(     
g(1,1) + \cdot \cdot \cdot + g(1, n)
g(2,1) + \cdot \cdot \cdot + g(2, n)

...
g(t,1) + \cdot \cdot \cdot + g(t, n)

\right)     ;

\bullet for each color i \in [t], if Ai,j is a fixed entry, then g(i,1), . . . , g(i, n) are all
fixed entries;

\bullet for each color i\in [t], if Ai,j is a periodic entry, then g(i,1), . . . , g(i, n) are all
periodic entries.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 929

In a similar manner for each j\prime \in [n], we define a behavior function of column j\prime in
B to be a function h : [t]\times [m]\rightarrow \{ 0,1, . . . , q,0+p,1+p, . . . , q+p\} such that

\bullet B\ast ,j\prime =

\left(     
h(1,1) + \cdot \cdot \cdot + h(1,m)
h(2,1) + \cdot \cdot \cdot + h(2,m)

...
h(t,1) + \cdot \cdot \cdot + h(t,m)

\right)     ;

\bullet for each color i \in [t], if Bi,j\prime is a fixed entry, then h(i,1), . . . , h(i, n) are all
fixed entries;

\bullet for each color i \in [t], if Bi,j\prime is a periodic entry, then h(i,1), . . . , h(i, n) are
all periodic entries.

For each j \in [m], let gj,1, . . . , gj,k enumerate all behavior functions of column j
in A. Similarly, for each j\prime \in [n], let hj\prime ,1, . . . , hj\prime ,k enumerate all behavior functions
of column j\prime in B. Note that we assume that the number of behavior functions of
column j in A is the same as the number of behavior functions of column j\prime in B for
every j \in [m] and every j\prime \in [n]. This is because we may ``repeat"" the same behavior
function a few times in the enumeration gj,1, . . . , gj,k and hj\prime ,1, . . . , hj\prime ,k.

For each j \in [m], for each j\prime \in [n], define the matrices Cj,j\prime and Dj,j\prime :

Cj,j\prime :=

\left(     
gj,1(1, j

\prime ) gj,2(1, j
\prime ) \cdot \cdot \cdot gj,k(1, j

\prime )
gj,1(2, j

\prime ) gj,2(2, j
\prime ) \cdot \cdot \cdot gj,k(2, j

\prime )
...

...
. . .

...
gj,1(t, j

\prime ) gj,2(t, j
\prime ) \cdot \cdot \cdot gj,k(t, j

\prime )

\right)     
and

Dj,j\prime :=

\left(     
hj\prime ,1(1, j) hj\prime ,2(1, j) \cdot \cdot \cdot hj\prime ,k(1, j)
hj\prime ,1(2, j) hj\prime ,2(2, j) \cdot \cdot \cdot hj\prime ,k(2, j)

...
...

. . .
...

hj\prime ,1(t, j) hj\prime ,2(t, j) \cdot \cdot \cdot hj\prime ,k(t, j)

\right)     .

Note that for each color i\in [t], if Ai,j is a fixed entry, the values gj,\ell (i,1), . . . , gj,\ell (i, n)
are all fixed for each \ell \in [k]. Hence all the values gj,1(i, j

\prime ), . . . , gj,k(i, j
\prime ) are fixed,

i.e., row i in Cj,j\prime contains only fixed entries. Similarly, if Ai,j is a periodic entry,
the values gj,\ell (i,1), . . . , gj,\ell (i, n) are all periodic for every \ell \in [k]. Hence all the values
gj,1(i, j

\prime ), . . . , gj,k(i, j
\prime ) are periodic, i.e., row i in Cj,j\prime contains only periodic entries.

Therefore for each j \in [m] and every j\prime \in [n] Cj,j\prime is a simple matrix. In a similar
manner, we can argue that each Dj,j\prime is a simple matrix.

We will show that every complete A| B-biregular graph can be decomposed into
complete Cj,j\prime | Dj,j\prime -biregular graphs for every j \in [m] and every j\prime \in [n], as stated
formally in Lemma 7.5.

Lemma 7.5. For every pair of size vectors \=M \in \BbbN m and \=N \in \BbbN n, the statements
(a) and (b) are equivalent.

(a) There is a complete A| B-biregular graph with size \=M | \=N .
(b) There are size vectors \=K1, . . . , \=Km, \=L1, . . . , \=Ln \in \BbbN k such that

\=M = (\| \=KT
1 \| , . . . ,\| \=KT

m\| ) and \=N = (\| \=LT
1 \| , . . . ,\| \=LT

n\| )

and for every j \in [m] and for every j\prime \in [n], there is a complete Cj,j\prime | Dj,j\prime -
biregular graph with size \=Kj | \=Lj\prime .
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930 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

The proof is a routine adaptation of Lemma 7.1, hence we omit the details. We
describe here the main intuition. For (a) implies (b), suppose G = (U,V,E1, . . . ,Et)
is a complete A| B-biregular graph with size \=M | \=N . Let U = U1 \uplus \cdot \cdot \cdot \uplus Um and V =
V1 \uplus \cdot \cdot \cdot \uplus Vn be the witness partition. For every j \in [m], for every j\prime \in [n], we can
show that each induced subgraph G[Uj \cup Vj\prime ] is a complete Cj,j\prime | Dj,j\prime -biregular graph
with witness partition Uj = Uj,g1 \uplus \cdot \cdot \cdot \uplus Uj,gk and Vj\prime = Vj\prime ,h1

\uplus \cdot \cdot \cdot \uplus Vj\prime ,hk
, where

\=Kj = (| Uj,g1 | , . . . , | Uj,gk | ) and \=Lj\prime = (| Vj\prime ,h1 | , . . . , | Vj\prime ,hk
| ).

Conversely, for (b) implies (a), let \=K1, . . . , \=Km, \=L1, . . . , \=Ln \in \BbbN k be such that

\=M = (\| \=KT
1 \| , . . . ,\| \=KT

m\| ) and \=N = (\| \=LT
1 \| , . . . ,\| \=LT

n\| ).

Suppose for every j \in [m] and for every j\prime \in [n], there is a complete Cj,j\prime | Dj,j\prime -
biregular graph Gj,j\prime with size \=Kj | \=Lj\prime . Due to the matching sizes, we can assume
that the set of vertices on the left-hand side of Gj,j\prime is Uj and the set of vertices on
the right-hand side of Gj,j\prime is Vj\prime , where | Uj | = \| \=KT

j \| and | Vj\prime | = \| \=LT
j\prime \| . Taking the

disjoint union of all the graphs G1,1\cup \cdot \cdot \cdot \cup Gm,n, we obtain a complete A| B-biregular
graph G with size \=M | \=N .

Using Lemma 7.5, we can now define the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) as required in
Theorem 3.2. We first explain the variables of the formula.

\bullet For every j \in [m], for every behavior function g of column j in A, we have a
variableXj,g. Let \=Xj = (Xj,g1 , . . . ,Xj,gk), where g1, . . . , gk are all the behavior
functions of column j in A.

\bullet Similarly, for every j\prime \in [n], for every behavior function h of column j\prime in B,
we have a variable Yj\prime ,h. Let \=Yj\prime = (Yj\prime ,h1 , . . . , Yj\prime ,hk

), where h1, . . . , hk are all
the behavior functions of column j\prime in B.

Consider the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y):

\exists \=X1 \cdot \cdot \cdot \exists \=Xm \exists \=Y1 \cdot \cdot \cdot \exists \=Yn \=x= (\| \=XT
1 \| , . . . ,\| \=XT

m\| ) \wedge \=y= (\| \=Y T
1 \| , . . . ,\| \=Y T

n \| )(7.1)

\wedge 
\bigwedge 

j\in [m]

\bigwedge 
j\prime \in [n]

\sansc -\sansb \sansi \sansr \sanse \sansg Cj,j\prime | Dj,j\prime 
( \=Xj , \=Yj\prime ).(7.2)

Note that Cj,j\prime and Dj,j\prime are simple matrices and the formula \sansc -\sansb \sansi \sansr \sanse \sansg Cj,j\prime | Dj,j\prime 
( \=Xj , \=Yj\prime )

is as defined in (6.4).
We show that the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) is correct, i.e., it captures all possible

sizes of complete A| B-biregular graphs, as stated formally in Theorem 7.6.

Theorem 7.6. For every pair of degree matrices A and B, for every pair of size
vectors \=M and \=N , the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B( \=M, \=N) holds in \scrN if and only if there is a
complete A| B-biregular graph with size \=M | \=N .

The proof follows directly from Lemmas 7.5 and 6.3.

7.3. Proof of Theorem 3.3: Construction of the Presburger formula for
complete regular digraphs. In section 7.2 we showed that given arbitrary degree
matrices A and B, we can construct a Presburger formula that captures precisely the
sizes of complete A| B-biregular graphs. The construction proceeds by reducing A and
B into a collection of simple matrices. The proof for the digraph case is very similar
to the biregular case. As in the 1-color case from subsection 4.2, the existence of A| B-
regular digraphs with size \=M can be reduced to the existence of A| B-biregular graphs
with size \=M | \=M . Indeed, an A| B-regular digraph G with size \=M can be encoded as
an A| B-biregular graph G\prime with size \=M | \=M by splitting each vertex w in G into two
vertices u and v in G\prime , where u is adjacent to all the outgoing edges and v to all the
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TWO VARIABLE LOGIC WITH U.P. COUNTING 931

incoming edges. Thus, G\prime is a bipartite graph where the vertices on the left-hand side
in G\prime are all the vertices with the outgoing edges and the vertices on the right-hand
side are all the vertices with the incoming edges; see Figure 5 for an illustration.

The construction of the desired formula \sansc -\sansr \sanse \sansg A| B(\=x) that captures all possible
sizes of a complete A| B-regular digraph can be done similarly to the one for complete
biregular graphs. First, we construct a formula \sansc -\sansr \sanse \sansg A| B(\=x) when A and B are simple
matrices, which is similar to section 6. The reduction from nonsimple matrices to
simple matrices is similar to the one in section 7.2. We omit the details, since they
are just a routine adaptation of the ones in sections 6 and 7.2.

8. Complexity of the decision procedures. We now analyze the complexity
for each of the problems studied earlier. We begin with the biregular graph problems.
We will then turn to the combined complexity of the decision procedure for the logic.
Finally, we consider the complexity of the decision procedure for the logic when we fix
a formula and vary its conjunction with a collection of ground facts---data complexity.

8.1. Complexity of the graph analysis. In this section we state the refined
versions of the main results concerning biregular graph and digraph problems, now
with complexity upper bounds. We do not have nontrivial lower bounds for these
problems. As before, we only deal with the finite satisfiability. The analysis of general
satisfiability can be found in the appendix.

Lemma 8.1. There is a nondeterministic Turing machine \scrM that does the fol-
lowing: on input degree matrices A \in \BbbN t\times m

+p and B \in \BbbN t\times n
+p , on every run r of \scrM , it

outputs an existential Presburger formula \varphi r(\=x, \=y) such that
\bullet each \varphi r(\=x, \=y) is of the form \exists \=z \widetilde \varphi r(\=x, \=y, \=z), where each \widetilde \varphi r(\=x, \=y, \=z) is a conjunc-
tion of O(mnt4\delta (A,B)4) linear (in)equations; and

\bullet for every ( \=M, \=N) \in \BbbN m \times \BbbN n, there is a complete A| B-biregular graph with
size \=M | \=N if and only if there is a run r of \scrM such that \varphi r( \=M, \=N) holds in
\scrN .

Moreover, \scrM runs in time exponential in the size of A and B, where the coefficients
of the input degree matrices and the output formula \varphi r are in binary.

Proof. For arbitrary degree matrices A\in \BbbN t\times m
+p and B \in \BbbN t\times n

+p , recall the formula
\sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) defined in (7.1),

\exists \=X1 \cdot \cdot \cdot \exists \=Xm \exists \=Y1 \cdot \cdot \cdot \exists \=Yn \=x= (\| \=XT
1 \| , . . . ,\| \=XT

m\| ) \wedge \=y= (\| \=Y T
1 \| , . . . ,\| \=Y T

n \| )
\wedge 

\bigwedge 
j\in [m]

\bigwedge 
j\prime \in [n]

\sansc -\sansb \sansi \sansr \sanse \sansg Cj,j\prime | Dj,j\prime 
( \=Xj , \=Yj\prime ),

where all Cj,j\prime and Dj,j\prime are simple matrices with t rows. Note that each variable in
each \=Xj is of the form Xj,g, where j \in [m] and g : [t]\times [n]\rightarrow \{ 0, . . . , q,0+p, . . . , q+p\} is
a function and q is the maximal finite offset in A and B. Hence the number of bits to
encode each Xj,g is polynomial in the length of A and B. Similarly for each variable
in each \=Yj\prime .

By Remark 6.4, each \sansc -\sansb \sansi \sansr \sanse \sansg Cj,j\prime | Dj,j\prime 
( \=Xj , \=Yj\prime ) is a disjunction of conjunctions of

O(t4\delta (A,B)4) (in)equations. Thus, the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) is a disjunction of
conjunctions of O(mnt4\delta (A,B)4) (in)equations.

The desired Non-Deterministic Turing machine (NTM) \scrM works as follows. On
input A and B, it constructs the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y), where on each disjunction,
it guesses which disjunct should hold. It outputs the constructed formula, which is a
conjunction of O(mnt4\delta (A,B)4) (in)equations and all the variables that are not in \=x
and \=y are existentially quantified.
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932 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

This by itself, of course, does not guarantee that the running time is only expo-
nential, since the number of variables in the system may be more than exponential.
Here we invoke results in [6, 12], which state that if a system of linear equations has
a solution, it has a solution in which the number of variables taking nonzero values
is bounded by a polynomial in the number of equations and in the length of the
binary representation of the coefficients in the system.10 Thus, when our algorithm
constructs the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y), it also guesses the variables that take non-
zero values, and ignores the remaining variables. Finally, applying Theorem 2.1, our
decision procedure runs in (nondeterministic) exponential time.

Lemma 8.2 is the directed graph analogue of Lemma 8.1, and the proof is similar.

Lemma 8.2. There is a nondeterministic Turing machine \scrM that does the fol-
lowing: on input degree matrices A \in \BbbN t\times m

+p and B \in \BbbN t\times m
+p , on every run r of \scrM , it

outputs an existential Presburger formula \varphi r(\=x) such that
\bullet each \varphi r(\=x) is of the form \exists \=z \widetilde \varphi r(\=x, \=z), where each \widetilde \varphi r(\=x, \=z) is a conjunction of
O(m2t4\delta (A,B)4) linear (in)equations; and

\bullet for every \=M \in \BbbN m
\infty , there is a complete A| B-regular digraph with size \=M if

and only if there is a run r of \scrM such that \varphi r( \=M) holds in \scrN .
Moreover, \scrM runs in time exponential in the size of A and B, where the coefficients
of the input degree matrices and the output formula \varphi r are in binary.

8.2. 2-NEXPTIME algorithm for the finite satisfiability of FO2
Pres. We

now give an analysis of the complexity of the decision procedure for our logic, based
on the analysis of the complexity of the corresponding graph problems.

Recall that \Pi and \scrE denote the set of 1- and 2-types, respectively. For finite
satisfiability, a behavior function is a function g : \{ out, in\} \times \scrE \times \Pi \rightarrow \BbbN +p, where the
codomain is \{ 0, . . . , q,0+p, . . . , q+p\} and q is the maximal offset in the u.p.s. Si's. So,
the total number of behavior functions is

m = (2q+ 2)2tn = 22tn log(2q+2),

where t= | \scrE | and n= | \Pi | .
We enumerate all behavior functions g1, . . . , gm and all 1-types \pi 1, . . . , \pi n. The

Presburger sentence \sansP \sansR \sansE \sansS \phi is of the form

\sansP \sansR \sansE \sansS \phi := \exists \=X \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X) \wedge \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X)\wedge 

\left(  \bigvee 
i\in [n], j\in [m]

X(\pi i,gj) \not = 0

\right)  ,

where \=X is a vector of variables (X(\pi 1,g1),X(\pi 1,g2), . . . ,X(\pi n,gm)).
The formula \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X) is

\sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1( \=X) :=
\bigwedge 

\pi is incompatible, g\in \scrG 

X\pi ,g = 0 \wedge 
\bigwedge 

(\pi ,g)\in H

X\pi ,g = 0

\wedge 
\bigwedge 

g is not a good function, \pi \in \Pi 

X\pi ,g = 0,

10For example, Corollary 5 in [12] states that if a system A\=x = \=b has a solution in \scrN , then it
has a solution \=x such that the number of variables taking nonzero values is at most 2(d + 1)(log(d +
1) + s + 2), where d is the number of rows of A and s is the largest size of a coefficient in A and b
(in binary representation).
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TWO VARIABLE LOGIC WITH U.P. COUNTING 933

where H is the set of all incompatible (\pi , g). Checking whether \pi and (\pi , g) are com-
patible/incompatible and whether g is a good function can be done in deterministic
exponential time. So, this formula is negligible in our analysis.

Recall that for a 1-type \pi , \=X\pi denotes the tuple of variables (X\pi ,g1 , . . . ,X\pi ,gm)
The formula \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2 is defined as

\sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X) :=
\bigwedge 

1\leqslant i\leqslant n

\sansc -\sansr \sanse \sansg M\mathrm{o}\mathrm{u}\mathrm{t}
\pi i

| M \mathrm{i}\mathrm{n}
\pi i
( \=X\pi i

) \wedge 
\bigwedge 

1\leqslant i<j\leqslant n

\sansc -\sansb \sansi \sansr \sanse \sansg L\pi j
| L\mathrm{r}\mathrm{e}\mathrm{v}

\pi i
( \=X\pi i

, \=X\pi j
),

where
\bullet Mout

\pi i
and M in

\pi i
are matrices with size t\times m, and

\bullet L\pi j and Lrev
\pi i

are matrices with size 2t\times m.
Recall that t and m are the number of 2-types and behavior functions, respectively.

Using the Turing machine in Lemmas 8.1 and 8.2, the decision procedure can
guess a formula \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2(\=x) where the total number of (in)equations is

O(n2m2t4\delta (A,B)4) = O(24tn log(2q+2)n2t4\delta (A,B)4),(8.1)

where t and n are the numbers of 2-types and 1-types, respectively. That is, the
number of (in)equations is doubly exponential in the size of the input formula.

The Turing machines in Lemmas 8.1 and 8.2 run in time exponential in the
size of each Mout

\pi i
| M in

\pi i
and L\pi j | Lrev

\pi i
which, in turn, is exponential in the size of the

input formula. So, altogether our decision procedure takes doubly exponential time to
construct \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X). Applying Theorem 2.1, it runs in (nondeterministic) doubly
exponential time.

Note that here we also invoke results in [6, 12]. Since the number of (in)equations
in \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2( \=X) is only doubly exponential, if it has a solution, it has a solution in
which the number of variables taking nonzero values is at most doubly exponential.
Thus, the decision procedure also guesses the variables that take nonzero values, and
ignores the remaining variables.

Thus, we have the 2-NEXPTIME upper bound for the finite satisfiability of
\sansF \sansO 2

Pres, as stated formally as Theorem 8.3.

Theorem 8.3. The finite satisfiability of \sansF \sansO 2
Pres is in 2-NEXPTIME.

8.3. 2-NEXPTIME algorithm for the general satisfiability of FO2
Pres.

In this subsection we will briefly explain that the same upper bound also holds for
the general satisfiability of \sansF \sansO 2

Pres. First, we have the following lemma which is the
analogue of Lemma 8.1 for the general case.

Lemma 8.4. There is a nondeterministic Turing machine \scrM that does the fol-
lowing: on input of degree matrices A\in \BbbN t\times m

\infty ,+p and B \in \BbbN t\times n
\infty ,+p, on every run r of \scrM ,

it outputs an existential Presburger formula \varphi r(\=x, \=y) such that
\bullet each \varphi r(\=x, \=y) is of the form \exists \=z \widetilde \varphi r(\=x, \=y, \=z), where each \widetilde \varphi r(\=x, \=y, \=z) is a conjunc-
tion of O(mn2tt4\delta (A,B)4) linear (in)equations; and

\bullet for every ( \=M, \=N)\in \BbbN m
\infty \times \BbbN n

\infty , there is complete A| B-biregular graph with size
\=M | \=N if and only if there is a run r of \scrM such that \varphi r( \=M, \=N) holds in \scrN \infty .

Moreover, \scrM runs in time exponential in the size of A and B, where the coefficients
of the input degree matrices and the output formula \varphi r are in binary.

Note the additional factor 2t in the number of linear (in)equations which is in-
curred in the construction of the formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) when A and B are simple
matrices and may contain \infty entries. The detailed analysis can be found in the ap-
pendix. The directed graph analogue is stated as Lemma 8.5.
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934 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Lemma 8.5. There is a nondeterministic Turing machine \scrM that does the fol-
lowing: on input of degree matrices A\in \BbbN t\times m

\infty ,+p and B \in \BbbN t\times m
\infty ,+p, on every run r of \scrM ,

it outputs an existential Presburger formula \varphi r(\=x) such that
\bullet each \varphi r(\=x) is of the form \exists \=z \widetilde \varphi r(\=x, \=z), where each \widetilde \varphi r(\=x, \=z) is a conjunction of
O(m22tt4\delta (A,B)4) linear (in)equations; and

\bullet for every \=M \in \BbbN m
\infty , there is a complete A| B-regular digraph with size \=M if

and only if there is a run r of \scrM such that \varphi r( \=M) holds in \scrN \infty .
Moreover, \scrM runs in time exponential in the size of A and B, where the coefficients
of the input degree matrices and the output formula \varphi r are in binary.

Another difference between the procedures for the finite and general satisfiabil-
ity of \sansF \sansO 2

Pres is that the codomain of a behavior function for the general case is
\{ \infty ,0, . . . , q,0+p, . . . , q+p\} , where q is the maximal (non-\infty ) offset in the u.p.s. Si's.
Then, the total number of behavior functions becomes

m = (2q+ 3)2tn = 22tn log(2q+3),

where t is the number of all 2-types and n is the number of all 1-types.
Similarly to the finite case, using the Turing machine in Lemmas 8.4 and 8.5,

the decision procedure can guess a formula \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2(\=x) where the total number of
(in)equations is

O(n2m22tt4\delta (A,B)4) = O(2t+4tn log(2q+3)n2t4\delta (A,B)4),(8.2)

where t and n are the numbers of 2-types and 1-types, respectively. That is, the
number of (in)equations is still doubly exponential in the size of the input formula.
Using the algorithm in Theorem 2.1, the 2-NEXPTIME upper bound also holds for
the general satisfiability of \sansF \sansO 2

Pres, as stated formally as Theorem 8.6.

Theorem 8.6. The general satisfiability of \sansF \sansO 2
Pres is in 2-NEXPTIME.

8.4. Data complexity of FO2
Pres formulas. We now turn to families of formu-

las of the form \phi \wedge 
\bigwedge 

D\in \scrD D, where \phi is in the logic and the set \scrD ranges over a finite
collection of facts. We say that \phi has NP data complexity of (finite) satisfiability if
there is a nondeterministic algorithm that takes as input a finite set of ground atoms
\scrD and determines whether \phi \wedge 

\bigwedge 
D\in \scrD D is satisfiable, running in time polynomial in

cardinality of \scrD .
Pratt-Hartmann [27] showed that \sansC 2 formulas have NP data complexity of both

satisfiability and finite satisfiability. Following the general approach to data complex-
ity from [27], while plugging in our Presburger characterization of \sansF \sansO 2

Pres, we can
show that the same data complexity bound holds for \sansF \sansO 2

Pres.

Theorem 8.7. \sansF \sansO 2
Pres formulas have NP data complexity of satisfiability and

finite satisfiability.

Proof. We give only the proof for finite satisfiability. We will follow closely the
approach used for \sansC 2 in section 4 of [27], and the terminology we use below comes
from that work. We fix the \sansF \sansO 2

Pres sentence \phi in the form 3.1.
Given a set of facts \scrD , our algorithm guesses a set of facts (including equalities)

on elements of \scrD , giving us a finite set of facts \scrD + extending \scrD , but with the same
domain as \scrD . We check that our guess is consistent with the universal part \alpha and
such that equality satisfies the usual transitivity and congruence rules.

Now consider 1-types and 2-types with an additional predicate Observable. Based
on this extended language, we consider good functions as before, and define the for-
mulas \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1 and \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2 based on them. 1-types that contain the predicate

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 935

Observable will be referred to as observable 1-types. The restriction of a behavior
function to observable 1-types will be called an observable behavior. Given a struc-
ture M , an observable one-type \pi , and an observable behavior function g0, we let
M\pi ,g0 be the elements of M having 1-type \pi and observable behavior g0, and we
analogously let \scrD \pi ,g0 be the elements of \scrD whose 1-type and behavior in \scrD + match
\pi and g0.

We declare that all elements in \scrD are in the predicate Observable. We add ad-
ditional conjuncts to the formulas \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 1 and \sansc \sanso \sansn \sanss \sansi \sanss \sanst \sanse \sansn \sanst 2 stating that for each
observable 1-type \pi and for each observable behavior function g0, the total sum of
the number of elements with 1-type \pi and a behavior function g extending g0 (i.e.,
the cardinality of M\pi ,g0) is the same as | \scrD \pi ,g0 | . Here the cardinality is being counted
modulo equalities of \scrD +.

At this point, our algorithm returns true exactly when the sentence obtained by
existentially quantifying this extended set of conjuncts is satisfiable in the integers.
The solving procedure is certainly in NP. In fact, since the number of variables is
fixed, with only the constants varying, it is in PTIME [24].

We argue for correctness, focusing on the proof that when the algorithm returns
true we have the desired model. Assuming the constraints above are satisfied, we get
a graph, and from the graph we get a model M . M will clearly satisfy \phi , but its
domain does not contain the domain of \scrD . Letting O be the elements of M satisfying
Observable, we know, from the additional constraints imposed, that the cardinality
of O matches the cardinality of the domain of \scrD modulo the equalities in \scrD +, and for
each observable 1-type \pi o and observable behavior g0, | M\pi ,g0 | = | \scrD \pi ,g0 | .

Fix an isomorphism \lambda taking each M\pi ,g0 to (equality classes of) \scrD \pi ,g0 . Create
M \prime by redefining M on O by connecting pairs (o1, o2) via a 2-type \mu exactly when
\lambda (o1), \lambda (o2) are connected via \mu in \scrD +. We can thus identify O with \scrD + modulo
equalities in M \prime .

ClearlyM \prime now satisfies the facts in \scrD . To see thatM \prime satisfies \phi , we simply note
that since all of the observable behaviors are unchanged in moving from an element
e in M to the corresponding element \lambda (e) in M \prime , and every such e modified has an
observable type, it follows that the behavior of every element in M is unchanged in
moving from M to M \prime . Since the 1-types are also unchanged, M \prime satisfies \phi .

Note that the data complexity result here is best possible, since even for \sansF \sansO 2 the
data complexity can be NP-hard [27].

9. The spectrum problem. As mentioned in the introduction, our Presburger
definability result gives additional information about models of \sansF \sansO 2

Pres sentences, al-
lowing us to characterize the sets that can occur as cardinalities of models. Recall
from the introduction that the spectrum of a sentence \phi in any logic is the set of
cardinalities of finite models of \phi . We now use the prior tools to characterize the
spectra for \sansF \sansO 2

Pres sentences.

Theorem 9.1. From an \sansF \sansO 2
Pres sentence \phi , we can effectively construct a Pres-

burger formula \psi (n) such that \scrN | =\psi (n) exactly when n is the size of a finite structure
that satisfies \phi , and similarly a formula \psi \infty (n) such that \scrN \infty | = \psi \infty (n) exactly when
n is the size of a finite or countably infinite model of \phi .

Proof. A type/behavior profile for a model \scrA is the vector of cardinalities of the
sets A\pi ,g, where \pi ranges of 1-types and g over behavior functions (for a fixed \phi ).
Recall that in the proof of Theorem 3.6 we actually showed, in Lemmas 3.11 and 3.12,
that we can construct existential Presburger formulas which define exactly the vectors

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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936 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

of integers that arise as the type/behavior profiles of models of \phi . The domain of the
model can be broken up as a disjoint union of sets A\pi ,g, and thus its cardinality is a
sum of numbers in this vector. We can thus add one additional integer variable x\sanst \sanso \sanst \sansa \sansl 
in \sansP \sansR \sansE \sansS \phi , which will be free, with an additional equation stating that x\sanst \sanso \sanst \sansa \sansl is the
sum of all X\pi ,g's. This allows us to conclude definability of the spectrum.

10. Related work. The biregular graph method was introduced and applied
to \sansC 2 in [19]. The case of 1-color is characterized by a Presburger formula that
just expresses the equality of the number of edges calculated from either side of the
bipartite graph. The nontrivial direction of correctness is shown via distributing
edges and then merging. The case of fixed degree and multiple colors is done via an
induction, using merging and then swapping to eliminate parallel edges. The case of
unfixed degree is handled using a case analysis depending on whether sizes are big
enough, but the approach is different from the one we apply here based on simple
matrices followed by a reduction from nonsimple to simple.

Note that a more restricted version of the method is used to prove the decidability
of \sansF \sansO 2 extended with two equivalence relations [18].

This work can be seen as a demonstration of the power of the biregular graph
method to get new decidability results. We make heavy use of both techniques and
results in [19], adapting them to the richer logic. The additional expressiveness of
the logic requires the introduction of additional inductive arguments to handle the
interaction of ordinary counting quantifiers and modulo counting quantification.

An alternative to the biregular graph method is the machinery developed by Pratt-
Hartmann for analyzing the decidability and complexity of \sansC 2 [25, 28], its fragments
[26], and its extensions [29, 7]. It is clear that the approaches are closely related,
despite the differing terminology. In [28] binary relationships that are tied to fixed
numerical bounds are associated with ``feature functions,"" while relationships that are
not constrained realize ``silent 2-types."" At this point we cannot provide a more precise
mapping, nor can we say whether it would be possible to extend the approach of [25]
to our logic. An advantage of the biregular graph method is that it is transparent
in how to extract more information about the shape of witness structures. While we
imagine that results on spectra of formulas can be shown via either method, with an
understanding of biregular graph problems related to a logic in hand, it is completely
straightforward to draw conclusions about the spectrum. From an expository point
of view, the biregular graph approach has the advantage that one deals with the
combinatorics of the underlying problems with the logic abstracted away early on.
But admittedly, the current arguments are complex in both approaches.

Characterizing the spectrum for general first-order formulas is quite a difficult
problem, with ties to major open questions in complexity theory [11]. There are
other logics, incomparable in expressiveness with \sansF \sansO 2

Pres, where periodicity of the
spectrum has been proven [17]. The arguments have a different feel, since in these
logics one can reduce to reasoning about forests.

The paper [4] shows decidability for a logic with incomparable expressiveness: the
quantification allows a more powerful quantitative comparison, but must be guarded---
restricting the counts only of sets of elements that are adjacent to a given element.
Counting extensions of 1-variable logics are studied in [2].

11. Conclusion. We have shown the Presburger definability of the solution set
to certain graph problems. Using this, we show that we can extend the powerful
language two-variable logic with counting to include ultimately periodic counting

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 937

quantifiers without sacrificing decidability, and without losing the effective definability
of the spectrum of formulas within Presburger arithmetic.

A number of complexity questions are left open by our work. We have obtained
a 2NEXPTIME bound on complexity of deciding satisfiability of the logic. However
the only lower bound we know of is NEXPTIME, inherited from \sansF \sansO 2.

A natural question left open by our work is the connection with other extensions
of two-variable logic with counting. It has been shown that two-variable logic with
counting remains decidable in the presence of a linear order [8]. It has also been
shown that decidability is maintained when one of the relations is restricted to be
an equivalence relation [29]. One would like to know if there is a common decidable
extension of our logic and one of (or, ideally, both of) these logics.

We also leave open a number of other complexity questions for biregular graph
analysis problems. In particular, the line between PTIME and NP for the membership
problem of subsection 3.1 (with cardinalities in unary) is open.

Appendix A. Scott normal form. In this appendix we prove that every \sansF \sansO 2
Pres

formula can be converted into the normal form used in the body of the paper,

\forall x\forall y \alpha (x, y) \wedge 
k\bigwedge 

i=1

\forall x\exists Siy \beta i(x, y)\wedge x \not = y,

where \alpha (x, y) is a quantifier-free formula, each \beta i(x, y) is an atomic formula, and each
Si is a u.p.s. Moreover, the conversion preserves the satisfiability and the spectra of
\sansF \sansO 2

Pres sentences.
We will first give a couple of lemmas.

Lemma A.1. Let S \subseteq \BbbN \infty , where 0 /\in S and let q be a unary predicate. Let \phi (x, y)
be a formula with free variables x and y. The sentence \Psi 1 that is defined as

\Psi 1 := \forall x
\bigl( 
q(x) \rightarrow \exists Sy \phi (x, y)

\bigr) 
is equivalent to the sentence \Psi 2 that is defined as

\Psi 2 := \forall x \exists S\cup \{ 0\} y
\bigl( 
q(x)\wedge \phi (x, y)

\bigr) 
\wedge \forall x \exists \BbbN \infty  - \{ 0\} y

\bigl( 
q(x)\rightarrow \phi (x, y)

\bigr) 
.

Proof. It is worth noting that q(x) \wedge \phi (x, y) is equivalent to (q(x) \rightarrow \phi (x, y)) \wedge 
(\neg q(x)\rightarrow \bot ).

Let \scrA be a structure. For an element a\in A, define Wa,\phi (x,y) as follows:

Wa,\phi (x,y) := \{ b\in A | (\scrA , x/a, y/b) | = \phi (x, y)\} ;

that is, Wa,\phi (x,y) is the set of elements that can be assigned to y so that \phi (x, y) holds,
when x is assigned with element a.

Suppose \scrA | =\Psi 1. So, for every a\in q\scrA , | Wa,\phi | \in S. Thus we have

\scrA , x/a | = \exists Sy q(x)\rightarrow \phi (x, y) and \scrA , x/a | = \exists Sy q(x)\wedge \phi (x, y).(A.1)

For every a /\in q\scrA , the following holds:

\scrA , x/a | = \exists | A| y q(x)\rightarrow \phi (x, y) and \scrA , x/a | = \exists 0y q(x)\wedge \phi (x, y).(A.2)

Combining (A.1) and (A.2), we have \scrA | =\Psi 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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938 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

For the other direction, suppose \scrA | = \Psi 2. Since \scrA | = \forall x \exists S\cup \{ 0\} y
\bigl( 
q(x) \wedge 

\phi (x, y)
\bigr) 
, for every a \in A, either | Wa,\phi (x,y)| = 0 or | Wa,\phi (x,y)| \in S. Since \scrA | =

\forall x \exists \BbbN \infty  - \{ 0\} y (q(x)\rightarrow \phi (x, y)), the following holds, for every a\in q\scrA :

| Wa,\phi (x,y)| \not = 0.

Thus, for every a\in q\scrA , | Wa,\phi (x,y)| \in S. Therefore, \scrA | =\Psi 1.

The next lemma is proven in a similar manner.

Lemma A.2. Let S \subseteq \BbbN \infty , where 0\in S and let q be a unary predicate. Let \phi (x, y)
be a formula with free variables x and y. The sentence \Psi 1 defined as

\Psi 1 := \forall x
\bigl( 
q(x) \rightarrow \exists Sy \phi (x, y)

\bigr) 
is equivalent to the sentence \Psi 2 defined as

\Psi 2 := \forall x \exists Sy
\bigl( 
q(x)\wedge \phi (x, y)

\bigr) 
.

Obviously, Lemmas A.1 and A.2 can be modified easily when q(x) is any quantifier-
free formula with free variable x.

Conversion into almost Scott normal form. We will first show how to convert an
\sansF \sansO 2

Pres sentence into an equisatisfiable sentence in almost Scott normal form:

\forall x\forall y \alpha (x, y) \wedge 
k\bigwedge 

i=1

\forall x\exists Siy \beta i(x, y).(A.3)

That is, the requirement x \not = y is dropped for \beta i(x, y) to hold. In fact, we get more
than equisatisfiability: each model of our sentence can be expanded to a model of
the normal form. This will be important for our result about the spectrum. In the
remainder of this section we omit similar statements for brevity.

The conversion is a rather standard renaming technique from two-variable logic.
Let \Psi be an \sansF \sansO 2

Pres sentence. We first assume that \Psi does not contain any subformula
of the form \forall x\phi , by rewriting thit em into the form \exists 0x\neg \phi .

Whenever there is a subformula \psi (x) in \Psi of the form \exists Sy \phi (x, y), where \phi (x, y)
is quantifier free and S is a u.p.s., we perform a transformation. Let q be a fresh
unary predicate, and replace the subformula \psi (x) in \Psi with atomic q(x), and add a
sentence which states that q(x) is equivalent to \psi (x):

\forall x
\bigl( 
q(x) \updownarrow \psi (x)

\bigr) 
which is equivalent to

\forall x
\bigl( 
q(x) \rightarrow \exists Sy \phi (x, y)

\bigr) 
\wedge \forall x

\bigl( 
\neg q(x) \rightarrow \exists \BbbN \infty  - Sy \phi (x, y)

\bigr) 
which, in turn, by Lemmas A.1 and A.2, can be converted into sentences of the form
(A.3). We iterate this procedure until \Psi is in the almost Scott normal form described
above.

Conversion into Scott normal form in (3.1). Now we provide the conversion from
almost Scott normal form into Scott normal form. Note that

\forall x\exists Sy \beta (x, y)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 939

is equivalent to

\forall x
\bigl( 
\neg \beta (x,x) \rightarrow \exists Sy \beta (x, y)\wedge x \not = y

\bigr) 
\wedge \forall x

\bigl( 
\beta (x,x) \rightarrow \exists S - 1y \beta (x, y)\wedge x \not = y

\bigr) 
,

where S  - 1 denotes the set \{ i - 1 | i\in S\} .
Applying Lemmas A.1 and A.2, a sentence of form (A.3) can be converted into

an equisatisfiable sentence of the form

\forall x\forall y \alpha (x, y) \wedge 
k\bigwedge 

i=1

\forall x\exists Siy \beta i(x, y)\wedge x \not = y,

where each \beta i(x, y) is quantifier free. To make it into Scott normal form, we introduce
a new predicate \gamma i(x, y), for each 1\leqslant i\leqslant k, and rewrite the sentence as follows:

\forall x\forall y

\Biggl( 
\alpha (x, y)\wedge 

k\bigwedge 
i=1

\bigl( 
\gamma i(x, y)\updownarrow \beta i(x, y)

\bigr) \Biggr) 
\wedge 

k\bigwedge 
i=1

\forall x\exists Siy \gamma i(x, y)\wedge x \not = y.

The conversion described above takes O(Cn) time, where n is the length of the
original \sansF \sansO 2

Pres sentence and the factor C is the complexity of computing the com-
plement \BbbN \infty  - S of a u.p.s. S, which of course, depends on the representation of a
u.p.s. However, we should note that the number of new atomic predicates introduced
is linear in n.

Appendix B. The extension of section 4, the 1-color case, to handle
infinite graphs. In this appendix we will extend the formulas in section 4 to handle
all possible (finite and infinite) sizes of 1-color A| B-biregular graphs.

Lemma B.1. For every A \in \BbbN 1\times m
\infty ,+p and B \in \BbbN 1\times n

\infty ,+p, there exists an (effectively
computable) existential Presburger formula \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) such that for every ( \=M, \=N)\in 
\BbbN m

\infty \times \BbbN n
\infty , the formula \sansc  - \sansb \sansi \sansr \sanse \sansg A| B( \=M, \=N) holds in \scrN \infty if and only if there is an A| B-

biregular graph with size \=M | \=N .

B.1. Notation and terminology. We regard \infty as a periodic entry, since \infty is
considered the same as \infty +p. Intuitively, the reason is that when a vertex has degree
\infty , adding p (or any arbitrary number) of additional new edges adjacent to it still
make its degree \infty . A periodic entry which is not \infty is called a finite periodic entry.
We define offset(\infty ) to be \infty .

For degree vectors \=a and \=b that contain \infty entries, we write \delta (\=a,\=b) to denote
the maximal finite entry in (offset(\=a),offset(\=b), p). For example, if \=a = (3,\infty ) and
\=b = (2+5,4), then \delta (\=a,\=b) is the maximal finite entry in (3,\infty ,2,4,5), which is 5. We
let per(\=a) denote the set of indexes j, where aj is a finite periodic entry and inf(\=a)
to denote the sets of indexes j, where aj = \infty . As before, nz(\=a) denotes the set of
indexes j where aj \not = 0.

We redefine the notion of big-enough when the degree vectors contain \infty entries.

Definition B.2. Let \=a and \=b be degree vectors and let \=M and \=N be size vectors
with the same length as \=a and \=b, respectively. We say that \=M | \=N is big-enough for \=a| \=b,
if each of the following holds:

(a) max(\| \=MT \| nz(\=a),\| \=NT \| nz(\=b))\geqslant 2\delta (\=a,\=b)2 + 1,

(b) \| \=MT \| per(\=a) = 0 or \geqslant \delta (\=a,\=b)2 + 1,
(c) \| \=MT \| inf(\=a) = 0 or \geqslant \delta (\=a,\=b),
(d) \| \=NT \| per(\=b) = 0 or \geqslant \delta (\=a,\=b)2 + 1,

(e) \| \=NT \| inf(\=b) = 0 or \geqslant \delta (\=a,\=b).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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940 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

B.2. The formula for the case of big-enough sizes. We consider four sce-
narios for the sizes \=M | \=N of \=a| \=b-biregular graphs:
(GS1) \| \=MT \| per(\=a) = \| \=MT \| inf(\=a) = \| \=NT \| per(\=b) = \| \=NT \| inf(\=b) = 0 (i.e., there are only

vertices with fixed degree);
(GS2) \| \=MT \| per(\=a) \not = 0 and \| \=MT \| inf(\=a) = \| \=NT \| per(\=b) = \| \=NT \| inf(\=b) = 0 (i.e., there are

vertices with finite periodic degrees on exactly one side, but no vertex with
\infty degree);

(GS3) \| \=MT \| per(\=a),\| \=NT \| per(\=b) \not = 0 and \| \=MT \| inf(\=a) = \| \=NT \| inf(\=b) = 0 (i.e., there are
vertices with finite periodic degrees on both sides, but no vertex with \infty 
degree),

(GS4) \| \=MT \| inf(\=a) \not = 0 or \| \=NT \| inf(\=b) \not = 0 (i.e., there are vertices with infinite degree).
The rest of this section is devoted to the formulas for each of the cases above.

Scenarios (GS1)--(GS3) are similar to (S1)--(S3) in section 4. For completeness, we
present the formulas for them, but without the correctness proofs. Scenario (GS4) is
a new scenario that is not present in the finite biregular graph case.

The formula and argument for scenario (GS1). Consider the formula Gen-
\psi 1
\=a| \=b(\=x, \=y):

offset(\=a) \cdot \=x= offset(\=b) \cdot \=y \wedge \| \=xT \| per(\=a) = \| \=xT \| inf(\=a) = \| \=yT \| per(\=b) = \| \=yT \| inf(\=b) = 0.

The last conjunct simply states that (GS1) holds.

Lemma B.3. For every pair of degree vectors \=a,\=b and for every pair of size vectors
\=M, \=N such that \=M | \=N is big-enough for \=a| \=b, the formula Gen-\psi 1

\=a| \=b(
\=M, \=N) holds in \scrN \infty 

if and only if there is an \=a| \=b-biregular graph with size \=M | \=N , where (GS1) holds.

Proof. The proof is similar to Lemma 4.3.

The formula and argument for scenario (GS2). Recall that (GS2) states that
``there are vertices with finite periodic degrees on exactly one side, but no vertex
with \infty degree."" By symmetry, we may assume that the vertices with finite periodic
degrees are on the left. Consider the formula Gen-\psi 2

\=a| \=b(\=x, \=y):

\exists z
\bigl( 
z \not =\infty \wedge offset(\=a) \cdot \=x + pz = offset(\=b) \cdot \=y

\bigr) 
\wedge \| \=xT \| per(\=a) \not = 0 \wedge \| \=xT \| inf(\=a) = \| \=yT \| per(\=b) = \| \=yT \| inf(\=b) = 0.

The last two conjuncts state that (GS2) holds.

Lemma B.4. For every pair of degree vectors \=a,\=b and for every pair of size vectors
\=M, \=N such that \=M | \=N is big-enough for \=a| \=b, the formula Gen-\psi 2

\=a| \=b(
\=M, \=N) holds in \scrN \infty 

if and only if there is an \=a| \=b-biregular graph with size \=M | \=N , where (GS2) holds.

Proof. The proof is similar to Lemma 4.4.

The formula and argument for scenario (GS3). Recall that (GS3) states that
``there are vertices with finite periodic degrees on both sides, but no vertex with \infty 
degree."" Consider the formula Gen-\psi 3

\=a| \=b(\=x, \=y):

\exists z1, z2
\bigl( 
z1 \not =\infty \wedge z2 \not =\infty \wedge offset(\=a) \cdot \=x+ pz1 = offset(\=b) \cdot \=y+ pz2

\bigr) 
\wedge \| \=xT \| per(\=a) \not = 0 \wedge \| \=yT \| per(\=b) \not = 0 \wedge \| \=xT \| inf(\=a) = \| \=yT \| inf(\=b) = 0.

Lemma B.5. For every pair of degree vectors \=a,\=b and for every pair of size vectors
\=M, \=N such that \=M | \=N is big-enough for \=a| \=b, the formula Gen-\psi 3

\=a| \=b(
\=M, \=N) holds in \scrN \infty 

if and only if there is an \=a| \=b-biregular graph with size \=M | \=N , where (GS3) holds.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 941

Proof. The proof is similar to Lemma 4.5.

The formula and argument for scenario (GS4). Recall that (GS4) states that
``there are vertices with infinite degree."" Consider the formula Gen-\psi 4

\=a| \=b(\=x, \=y):\bigl( 
\| \=xT \| inf(\=a) \not = 0 \vee \| \=yT \| inf(\=b) \not = 0

\bigr) 
(B.1)

\wedge 
\bigl( 
\| \=xT \| inf(\=a) \not = 0 \rightarrow \| \=yT \| nz(\=b) =\infty 

\bigr) 
\wedge 
\bigl( 
\| \=yT \| inf(\=b) \not = 0 \rightarrow \| \=xT \| nz(\=a) =\infty 

\bigr) 
.(B.2)

Notice that, unlike the previous scenarios, this formula does not involve any edge
counting on the finite entries. Instead, we will make use of the fact that infinite degree
vertices give us a lot of flexibility in forming graphs that meet our specification.

Lemma B.6. For every pair of degree vectors \=a,\=b and for every pair of size vectors
\=M, \=N such that \=M | \=N is big-enough for \=a| \=b, the formula Gen-\psi 4

\=a| \=b(
\=M, \=N) holds in \scrN \infty 

if and only if there is an \=a| \=b-biregular graph with size \=M | \=N , where (GS4) holds.

Proof. Let \=a,\=b be degree vectors and \=M | \=N be big-enough for \=a| \=b. For the if
direction, suppose there is an \=a| \=b-biregular graph with size \=M | \=N , where (GS4) holds.
Thus, \| \=MT \| inf(\=a) \not = 0 or \| \=NT \| inf(\=a) \not = 0. If there is a vertex on the left with \infty degree,
there are infinitely many vertices with nonzero degree on the right. Symmetrically, if
there is a vertex on the right with \infty degree, there are infinitely many vertices with
nonzero degree on the left. Therefore, Gen-\psi 4

\=a| \=b(
\=M, \=N) holds in \scrN \infty .

We now prove the only if direction, assuming Gen-\psi 4
\=a| \=b(

\=M, \=N) holds in \scrN \infty and

constructing an \=a| \=b-biregular graph G= (U,V,E) with size \=M | \=N . Let m be the length
of \=a and n be the length of \=b. First, we pick pairwise disjoint sets U1, . . . ,Um, where
each | Uj | =Mj and pairwise disjoint sets V1, . . . , Vn, where each | Vj | =Nj . We define
the set of vertices of our graph as U =U1 \cup \cdot \cdot \cdot \cup Um and V = V1 \cup \cdot \cdot \cdot \cup Vn.

We know \| \=MT \| inf(\=a) \not = 0 or \| \=NT \| inf(\=a) \not = 0. Hence we have at least one of
\| \=MT \| inf(\=a) \not = 0 and \| \=NT \| nz(\=b) =\infty or \| \=NT \| inf(\=b) \not = 0 and \| \=MT \| nz(\=a) =\infty .

We can break this down further into three cases:
(a) U is infinite and V is finite.
(b) U is finite and V is infinite.
(c) U is infinite and V is infinite.
Case (a): We perform the following two steps.
\bullet Step 1: Making the degrees of vertices in V correct.

Let k be any index such that Uk is infinite. For every j \in [n], for every vertex
v \in Vj , we ensure that its degree is offset(bj) by connecting v with some
``nonadjacent"" vertices from the set Uk---that is, vertices in Uk that are not
yet adjacent to any vertices in V . Since Uk has an infinite supply of vertices,
there are always such nonadjacent vertices for each vertex v. The purpose
of picking nonadjacent vertices is that, after this step, every vertex in U has
degree either 0 or 1.

\bullet Step 2: Making the degrees of vertices in U correct.
Let V\infty =

\bigcup 
j\in inf(\=b) Vj , i.e., the set of vertices in V that are supposed to have

\infty degree. Since \| \=NT \| inf(\=b) \not = 0, the set V\infty is not empty. Moreover, since
\=M | \=N is big-enough, the cardinality | V\infty | \geqslant \delta (\=a,\=b).
Note that the degree of every vertex in U is at most 1. For every j \in [m],
for every vertex u \in Uj , we ensure its degree is offset(bj) by connecting u
with some vertices in V\infty . This is possible since offset(bj)\leqslant \delta (\=a,\=b) for every
j \in [m].

Case (b): is clearly symmetric to case (a).
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942 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Case (c): We enumerate the elements u1, u2, . . . and v1, v2, . . . in U and V , re-
spectively. We construct an \=a| \=b-biregular graph G= (U,V,E) by iterating through all
\ell = 1,2, . . ., where on each iteration \ell , we do the following.

\bullet We make the degree of u\ell ``correct"" in the sense that if j is the index where
u\ell \in Uj , we make its degree become offset(aj).

\bullet We make the degree of v\ell correct in the sense that if j is the index where
v\ell \in Uj , we make its degree become offset(bj).

At the same time, while making the degrees of u\ell and v\ell correct, we ensure the
following:

1. The degrees of the vertices u1, . . . , u\ell  - 1 do not change and are already correct
in the sense that for every u \in \{ u1, . . . , u\ell  - 1\} , if j is the index where u \in Uj ,
its degree is already offset(aj).

2. The degrees of the vertices v1, . . . , v\ell  - 1 do not change and are already correct
in the sense that for every v \in \{ v1, . . . , v\ell  - 1\} , if j is the index where v \in Vj ,
its degree is already offset(bj).

3. The degree of each vertex in \{ u\ell +1, u\ell +2, . . .\} \cup \{ v\ell +1, v\ell +2, . . .\} is 0 or 1.
4. There are infinitely many vertices in \{ u\ell +1, u\ell +2, . . .\} with degree 0.
5. There are infinitely many vertices in \{ v\ell +1, v\ell +2, . . .\} with degree 0.

Since U (resp., V ) is countable, every vertex u \in U (resp., v \in V ) has a finite index
\ell such that u\ell = u (resp., v\ell = v). After the \ell th iteration the degree of u\ell (resp., v\ell )
does not change any more. Thus, as the iteration index \ell goes to \infty , the degree of
every vertex is correct and we obtain an \=a| \=b-biregular graph G.

We now describe how to make the degree of u\ell correct. At the beginning of the
\ell th iteration, the degree of u\ell is either 0 or 1. We make it correct by picking some zero
degree vertices in \{ v\ell +1, v\ell +2\} and connecting them to u\ell . Such zero degree vertices
exist and there are infinitely many of them. Of course, if the degree of u\ell is supposed
to be 1, we do not need to pick any vertices. If the degree of u\ell is supposed to be \infty ,
we also make sure that there are still infinitely many zero degree vertices left in U .
Observe also that the degrees of the vertices u1, . . . , u\ell  - 1, v1, . . . , v\ell  - 1 do not change.
Making the degree of v\ell correct can be done symmetrically.

As in subsection 4.1.2, to capture all possible sizes of \=a| \=b-biregular graphs there
are only some fixed k cases to consider, where each case is either equal to or sym-
metric to one of the scenarios (GS1)--(GS4). We can enumerate all the formu-
las \varphi 1(\=x, \=y), . . . ,\varphi k(\=x, \=y) that deal with each of the cases and define the formula
Gen-\psi \=a| \=b(\=x, \=y):

k\bigvee 
i=1

\varphi i(\=x, \=y).(B.3)

Combining Lemmas B.3--B.6, Gen-\psi \=a| \=b(\=x, \=y) captures precisely all the big-enough sizes
\=M | \=N of an \=a| \=b-biregular graph.

B.3. The formula for the case of not-big-enough sizes: Fixed size en-
coding. To capture the not-big-enough sizes, we use the same ``fixed size encoding""
technique as in subsection 4.1.3. Note that not-big-enough sizes mean that one of the
conditions (a)--(e) is violated. So, either we have restricted the total size of the graphs
(when condition (a) is violated) or at least one of the norms \| \=MT \| per(\=a), \| \=MT \| inf(\=a),
\| \=NT \| per(\=b), \| \=NT \| inf(\=b) is fixed to some number. Since we can deal with the first
option by enumeration, we focus on the second. The idea is that we can use fixed
size enumeration as in subsection 4.1.3, with additional minor extensions to handle

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 943

vertices with \infty degree. To illustrate, we will show the construction when the first
two of the four norms above are fixed to some number, while the second two still
satisfy the corresponding condition in big-enough. This corresponds to (b) and (c)
being violated, while (a), (d), and (e) hold, in the definition of big-enough. In this
case we will have vertices with periodic and infinite degrees on the left-hand side, but
not too many.

Let \=a,\=b be degree vectors. We will give the formula Gen-\phi r1,r2
\=a| \=b (\=x, \=y) to capture

the sizes \=M | \=N of all possible \=a| \=b-biregular graphs where each of the following holds.
\bullet \| \=MT \| nz(\=a)  - r1  - r2 \geqslant 2\delta (\=a,\=b)2 + 1.
\bullet \| \=MT \| per(\=a) = r1 \leqslant \delta (\=a,\=b)2.
\bullet \| \=MT \| inf(\=a) = r2 \leqslant \delta (\=a,\=b) - 1.
\bullet \| \=NT \| per(\=b) = 0 or \geqslant \delta (\=a,\=b)2 + 1.

\bullet \| \=NT \| inf(\=b) = 0 or \geqslant \delta (\=a,\=b).
If the first bullet item does not hold, the number of edges is at most 3\delta (\=a,\=b)2+\delta (\=a,\=b),
and the sizes of all these graphs can simply enumerated. The formula is defined
inductively on r1 + r2 with the base case r1 + r2 = 0. Note that when r1 + r2 = 0,
\| \=MT \| per(\=a) = \| \=MT \| inf(\=a) = 0, which means (b) and (c) are no longer violated.

For an integer r1, r2 \geqslant 0, we define the formula Gen-\phi r1,r2
\=a| \=b (\=x, \=y) as follows.

\bullet When r1 = r2 = 0, Gen-\phi r1,r2
\=a| \=b (\=x, \=y) is defined as in Lemma 4.6.

\bullet When r1 \geqslant 1, let

\phi r1 - 1,r2
\=a| \=b (\=x, \=y) := \exists s\exists \=z0\exists \=z1

\bigvee 
i\in per(\=a)

\left(    
xi \not = 0 \wedge \=z0 + \=z1 = \=y
\wedge s \not =\infty 
\wedge \| \=zT1 \| nz(\=b) = offset(ai) + ps

\wedge \phi r1 - 1,r2
\=a| (\=b,\=b - \=1)

(\=x - ei, \=z0, \=z1)

\right)    ,

where ei is the unit vector where the ith component is 1, and the lengths
of \=z0 and \=z1 are the same as \=y The vector subtraction \=b - \=1 is defined as in
subsection 4.1.3 extended with \infty  - 1 =\infty .

\bullet When r2 \geqslant 1, let

\phi r1,r2 - 1

\=a| \=b (\=x, \=y) := \exists s\exists \=z0\exists \=z1
\bigvee 

i\in inf(\=a)

\left(  xi \not = 0 \wedge \=z0 + \=z1 = \=y
\wedge \| \=zT1 \| nz(\=b) =\infty 
\wedge \phi r1,r2 - 1

\=a| (\=b,\=b - \=1)
(\=x - ei, \=z0, \=z1)

\right)  ,

where ei is as in the previous case and the lengths of \=z0 and \=z1 are the same
as \=y. The vector subtraction \=b - \=1 is defined as in the previous case.

Lemma B.7. For every integer r1, r2 \geqslant 0, for every pair of degree vectors \=a,\=b, for
every pair of size vectors \=M, \=N such that

\bullet \| \=MT \| nz(\=a)  - r1  - r2 \geqslant 2\delta (\=a,\=b)2 + 1,
\bullet \| \=MT \| per(\=a) = r1,
\bullet \| \=MT \| inf(\=a) = r2,
\bullet \| \=NT \| per(\=b) = 0 or \geqslant \delta (\=a,\=b)2 + 1,

\bullet \| \=NT \| inf(\=b) = 0 or \geqslant \delta (\=a,\=b),
the formula \phi r1,r2

\=a| \=b ( \=M, \=N) holds in \scrN \infty if and only if there is an \=a| \=b-biregular graph

with size \=M | \=N .

Proof. The proof is by induction on r1 + r2 and is a routine adaptation of
Lemma 4.7.

As mentioned in subsection 4.1.3, the remaining not-big-enough cases can be
captured by formulas similar to the one given above.
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944 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

B.4. The proof in the 1-color case for regular digraphs. Recall that we
define digraphs so that they have no self-loops. Similar to what was done in subsec-
tion 4.2, a digraph can be viewed as a bipartite graph by splitting every vertex u into
two vertices, where one is adjacent to all the incoming edges, and the other to all
the outgoing edges. Thus, \=a| \=b-biregular digraphs with size \=M can be characterized as
\=a| \=b-biregular graphs with size \=M | \=M . The construction of the formula for all the sizes
of \=a| \=b-regular digraphs can be done by a routine adaptation of the one in sections B.2
and B.3.

Appendix C. The extension of section 5 (simple multicolor graphs)
to infinite graphs. We will extend the formulas in section 5 to accommodate all
possible (finite and infinite) sizes of A| B-biregular graphs, where A and B are simple
degree matrices, as stated formally in Lemma C.1.

Lemma C.1. For every pair of simple matrices A\in \BbbN t\times m
\infty ,+p and B \in \BbbN t\times m

\infty ,+p, there
exists an (effectively computable) existential Presburger formula \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) such
that for every pair of size vectors \=M \in \BbbN m

\infty and \=N \in \BbbN n
\infty , the formula \sansb \sansi \sansr \sanse \sansg A| B( \=M, \=N)

holds in \scrN \infty if and only if there is an A| B-biregular graph with size \=M | \=N .

This section is organized as follows. To deal with an \infty entry, we need some
new notation, introduced in section C.1. Section C.2 contains the construction of the
formula for extra-big-enough sizes---a generalization of the ones in sections 5.2 and 5.3.
Here there is a new case which is specific to an\infty entry. We discuss the formula for the
sizes that are not extra-big-enough---where no new ideas are needed---in section C.3.

C.1. Notation and terminology. Let A be a degree matrix with t rows and m
columns. For nonempty subsets R\subseteq [t], we write AR,\ast to denote the matrix obtained
by keeping only the rows with indices in R, with no column being omitted. Likewise,
for J \subseteq [m], A\ast ,J denotes the matrix obtained by keeping only the columns with
indices in J , with no rows being omitted.

Recall that we regard an \infty entry as a periodic entry. The finite offset of A,
denoted by fin-offset(A) is the matrix obtained by replacing every\infty entry in offset(A)
with 0. That is, in fin-offset(A) we are concerned only with the non-\infty entries. For
example, if A= ( 2

+p \infty 
0 3+p ), then offset(A) = ( 2 \infty 

0 3 ) and fin-offset(A) = ( 2 0
0 3 ). Obviously,

if A does not contain any \infty entry, offset(A) = fin-offset(A).
If A and B contain periodic or infinite entries, \delta (A,B) denotes

max(\| fin-offset(A)\| ,\| fin-offset(B)\| , p). We also have to modify the notion of extra-
big-enough in section 5.1 in order to take the \infty entries into account.

Definition C.2. Let A and B be simple degree matrices with t rows. Let \=M
and \=N be size vectors, where \=M | \=N is appropriate for A| B. We say that \=M | \=N is
extra-big-enough for A| B, if for every i\in [t]

(a) max(\| \=MT \| nz(Ai,\ast ),\| \=NT \| nz(Bi,\ast ))\geqslant 8t2\delta (A,B)4 + 1,
(b) \| \=MT \| per(Ai,\ast ) = 0 or \geqslant \delta (A,B)2 + 1,
(c) \| \=MT \| inf(Ai,\ast ) = 0 or \geqslant t\delta (A,B),
(d) \| \=NT \| per(Bi,\ast ) = 0 or \geqslant \delta (A,B)2 + 1,
(e) \| \=NT \| inf(Bi,\ast ) = 0 or \geqslant t\delta (A,B).

C.2. Proof of Lemma C.1 for big-enough sizes. We divide the proof into
three scenarios.
(GM1) \| \=MT \| nz(Ai,\ast ),\| \=NT \| nz(Bi,\ast ) \not =\infty for every i \in [t] (i.e., the number of vertices

with nonzero degree is finite, which means that the degree of every vertex
must be finite).
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TWO VARIABLE LOGIC WITH U.P. COUNTING 945

(GM2) \| \=MT \| inf(Ai,\ast ) = \| \=NT \| inf(Bi,\ast ) = 0 for every i \in [t] (i.e., the degree of every
vertex is finite, but there may be infinitely many vertices).

(GM3) (the general case).
Note that (GM1) is strictly subsumed by (GM2), since in (GM2) the number of ver-
tices with nonzero (finite) degree may be infinite. (GM2) is clearly strictly subsumed
by (GM3). The rest of this section is devoted to the formulas for each of the scenar-
ios above. The formula for scenario (GMi) will be used by the formula for cenario
(GMi + 1). Only (GM3), which deals with the possibility of vertices with infinite
degree, will require substantial new work.

The formula and argument for scenario (GM1). For simple degree matrices A
and B with t rows, consider the formula Gen-\Psi 1

A| B(\=x, \=y) given by

\exists z1,1 \cdot \cdot \cdot \exists z1,t \exists z2,1 \cdot \cdot \cdot \exists z2,t(C.1)

offset(A) \cdot \=xT +

\left(   \alpha 1pz1,1
...

\alpha tpz1,t

\right)   = offset(B) \cdot \=yT +

\left(   \beta 1pz2,1...
\beta tpz2,t

\right)   
\wedge 
\bigwedge 
i\in [t]

z1,i \not =\infty \wedge z2,i \not =\infty \wedge \| \=xT \| nz(Ai,\ast ) \not =\infty \wedge \| \=yT \| nz(Bi,\ast ) \not =\infty 

\wedge 
\bigwedge 
i\in [t]

\| \=xT \| inf(Ai,\ast ) = \| \=yT \| inf(Bi,\ast ) = 0,

where \alpha i = 1 if row i in A consists of periodic entries and is 0 otherwise,. Similarly
\beta i = 1 if row i in B consists of periodic entries and is 0 otherwise.

We claim that Gen-\Psi 1
A| B(\=x, \=y) captures all possible big-enough sizes \=M | \=N of A| B-

biregular graphs where (GM1) holds, as stated in Lemma C.3.

Lemma C.3. For each pair of simple degree matrices A and B, and each pair of
size vectors \=M, \=N such that \=M | \=N is big-enough for A| B, the formula \Psi 1

A| B(
\=M, \=N)

holds in \scrN \infty if and only if there is an A| B-biregular graph with size \=M | \=N , where
(GM1) holds.

Proof. This is similar to Lemma 5.9.

The formula and argument for scenario (GM2). Recall that (GM2) states that
there is no vertex with \infty degree, but the number of edges may be infinite. The
main idea for this scenario is to partition the edge colors into two kinds, depending
on whether the number of edges is finite or infinite.

For simple matrices A and B with t rows, for a subset R\subseteq [t], consider the formula
Gen-\Psi 2,R

A| B(\=x, \=y) given by

Gen-\Psi 1
AR,\ast | BR,\ast 

(\=x, \=y) \wedge 
\bigwedge 
i\in [t]

\| \=xT \| inf(Ai,\ast ) = \| \=yT \| inf(Bi,\ast ) = 0(C.2)

\wedge 
\bigwedge 
i/\in R

\| \=xT \| nz(Ai,\ast ) = \| \=yT \| nz(Bi,\ast ) =\infty ,(C.3)

where Gen-\Psi 1
AR,\ast | BR,\ast 

(\=x, \=y) is as defined in (C.1). Recall that AR,\ast is the matrix

obtained from A by omitting all the rows not in R. When R = [t], the formula
Gen-\Psi 2,R

A| B(\=x, \=y) is the same as Gen-\Psi 1
A| B(\=x, \=y) defined for scenario (GM1).

Intuitively, Gen-\Psi 2,R
A| B(\=x, \=y) captures all the big-enough sizes of A| B-biregular

graphs where (GM2) holds and i \in R if and only if the number of Ei-edges is fi-
nite. This is stated formally as Lemma C.4.
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946 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Lemma C.4. For every pair of simple matrices A and B with t rows, for every
R\subseteq [t] and for every \=M | \=N big-enough for A| B, the following are equivalent:

1. Gen-\Psi 2,R
A| B(

\=M, \=N) holds in \scrN \infty .

2. There is an A| B-biregular graph G= (U,V,E1, . . . ,Et) with size \=M | \=N , where
(GM2) holds and R= \{ i : | Ei| \not =\infty \} .

Proof. Let A and B be simple matrices with t rows and R \subseteq [t]. Let \=M | \=N be
big-enough for A| B.

We first prove ``2 implies 1."" Suppose G= (U,V,E1, . . . ,Et) is an A| B-biregular
graph with size \=M | \=N , where (GM2) holds and R = \{ i : | Ei| \not = \infty \} . For every i \in 
R, since | Ei| \not = \infty , both \| \=MT \| nz(Ai,\ast ) and \| \=NT \| nz(Bi,\ast ) are not \infty . This means
that G is an AR,\ast | BR,\ast -biregular graph, where (GM1) holds. By Lemma 5.9, Gen-
\Psi 2

AR,\ast | BR,\ast 
( \=M, \=N) holds.

Since (GM2) holds in G, there is no vertex with \infty degree. Thus, we have\bigwedge 
i\in [t]

\| \=MT \| inf(Ai,\ast ) = \| \=NT \| inf(Bi,\ast ) = 0.

Since every vertex has finite Ei-degree and | Ei| = \infty , for every i /\in R, the following
conjunction holds: \bigwedge 

i/\in R

\| \=MT \| nz(Ai,\ast ) = \| \=NT \| nz(Bi,\ast ) =\infty .

Combining all the assertions above, we see that Gen-\Psi 2,R
A| B(

\=M, \=N) holds.

Now we prove ``1 implies 2."" Suppose Gen-\Psi 2,R
A| B(

\=M, \=N) holds in \scrN \infty . For sim-

plicity, let R= [\ell ]. Similarly to Lemma C.3, since \| \=xT \| inf(Ai,\ast ) = \| \=yT \| inf(Bi,\ast ) = 0 for
every i\in [t], we may assume that A and B do not contain an \infty entry.

Since Gen-\Psi 1
AR,\ast | BR,\ast 

( \=M, \=N) holds, by Lemma C.3 there is an AR,\ast | BR,\ast -biregular

graph G0 = (U,V,E1, . . . ,E\ell ) with size \=M | \=N , where (GM2) holds. Moreover, by (C.3),
we have \bigwedge 

i/\in R

\| \=MT \| nz(Ai,\ast ) = \| \=NT \| nz(Bi,\ast ) =\infty .

Hence for every i /\in R we have

offset(Ai,\ast ) \cdot \=M = offset(Bi,\ast ) \cdot \=N.

By Lemma B.3, there is an offset(Ai,\ast )| offset(Bi,\ast )-biregular graph Gi = (U,V,Ei)
with size \=M | \=N for every color i /\in R.

Consider the graph G= (U,V,E1, . . . ,Et) with size \=M | \=N . This graph G is almost
A| B-biregular except that there may be an edge (u, v) \in Ei1 \cap Ei2 , for some i1 \not = i2.
We use the edge swapping as in Lemma 5.6, to remove all such parallel edges.

Note that since G0 is already AR,\ast | BR,\ast -biregular, at least one of i1, i2 is not in
R. Suppose i1 /\in R. Since | Ei1 | =\infty and the degree of every vertex in G is finite, there
is an Ei1-edge (w,w\prime ) that is not incident to any of the neighbors of u and v. We
can perform edge swapping (see also Figure 2) so that (u, v) is no longer an Ei1-edge,
without affecting the degree of each vertex. We perform edge swapping until there
are no more parallel edges. This completes the proof of Lemma C.4.

To wrap up scenario (GM2), we define formula Gen-\Psi 2
A| B(\=x, \=y) for simple matrices

A and B as
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TWO VARIABLE LOGIC WITH U.P. COUNTING 947\bigvee 
R\subseteq [t]

Gen-\Psi 2,R
A| B(\=x, \=y),(C.4)

where each Gen-\Psi 2,R
A| B(\=x, \=y) is defined in (C.2)--(C.3). This formula Gen-\Psi 2

A| B(\=x, \=y)

captures precisely all the extra-big-enough sizes ofA| B-biregular graphs, where (GM2)
holds, as stated formally as Lemma C.5.

Lemma C.5. For each pair of simple matrices A and B, and for each pair of size
vectors \=M, \=N such that \=M | \=N is big-enough for A| B, the formula Gen-\Psi 2

A| B(
\=M, \=N)

holds in \scrN \infty if and only if there is an A| B-biregular graph with size \=M | \=N , where
(GM2) holds.

Proof. Let A and B be simple matrices A and B with t rows and \=M | \=N be big-
enough for A| B.

We start with the if direction. Suppose there is an A| B-biregular graph G =
(U,V,E1, . . . ,Et) with size \=M | \=N , where (GM2) holds. Let R = \{ i : | Ei| \not = \infty \} . By
Lemma C.4, Gen-\Psi 2,R

A| B(
\=M, \=N) holds. Thus, Gen-\Psi 2

A| B(
\=M, \=N) holds.

For the only if direction, suppose Gen-\Psi 2
A| B(

\=M, \=N) holds in \scrN \infty . Let R be

such that Gen-\Psi 2,R
A| B(

\=M, \=N) holds. By Lemma C.4, there is an A| B-biregular graph

G= (U,V,E1, . . . ,Et) with size \=M | \=N , where (GM2) holds and R= \{ i : | Ei| \not =\infty \} .
The formula and argument for scenario (GM3). Recall that (GM3) is the general

case where there may be vertices with infinite degree. The main idea here is to
partition the edge colors Ei into two kinds, but this time depending on whether there
are vertices with infinite Ei-degree. Let A and B be simple matrices with t rows and
R\subseteq [t]. Consider the formula Gen-\Psi 3,R

A| B(\=x, \=y) given by

Gen-\Psi 2
AR,\ast | BR,\ast 

(\=x, \=y) \wedge 
\bigwedge 
i/\in R

\bigl( 
\| \=xT \| inf(Ai,\ast ) \not = 0 \vee \| \=yT \| inf(Bi,\ast ) \not = 0

\bigr) 
(C.5)

\wedge 
\bigwedge 
i/\in R

\| \=xT \| inf(Ai,\ast ) \not = 0 \rightarrow \| \=yT \| nz(Bi,\ast ) =\infty (C.6)

\wedge 
\bigwedge 
i/\in R

\| \=yT \| inf(Bi,\ast ) \not = 0 \rightarrow \| \=xT \| nz(Ai,\ast ) =\infty ,(C.7)

where Gen-\Psi 2
AR,\ast | BR,\ast 

(\=x, \=y) is as defined in (C.4). When R = [t], Gen-\Psi 3,R
A| B(\=x, \=y) is

the same as Gen-\Psi 2
A| B(\=x, \=y) defined for scenario (GM2).

Intuitively, Gen-\Psi 3,R
A| B(\=x, \=y) captures all the big-enough sizes of A| B-biregular

graphs, where R is the set of colors i such that every vertex has finite Ei-degree.
We state this formally in Lemma C.6.

Lemma C.6. For every pair of simple matrices A and B with t rows, for every
R \subseteq [t], and for every pair of size vectors \=M, \=N such that \=M | \=N is extra-big-enough
for A| B, the following are equivalent:

1. Gen-\Psi 3,R
A| B(

\=M, \=N) holds in \scrN \infty .

2. There is an A| B-biregular graph G= (U,V,E1, . . . ,Et) with size \=M | \=N , where
R= \{ i : every vertex in G has finite Ei-degree\} .

Proof. Let A and B be simple matrices with t rows and let R\subseteq [t]. Let \=M | \=N be
extra-big-enough for A| B.

We first prove 2 implies 1. Let G be an A| B-biregular graph with size \=M | \=N
and R = \{ i : every vertex in G has finite Ei-degree\} . Thus, G is also an AR,\ast | BR,\ast -
biregular graph, where (GM2) holds. By Lemma C.5, Gen-\Psi 2

AR,\ast | BR,\ast 
( \=M, \=N) holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

0/
25

 to
 8

6.
3.

37
.1

38
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



948 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

By the definition of R, for every i /\in R, we have

\| \=MT \| inf(Ai,\ast ) \not = 0 or \| \=NT \| inf(Bi,\ast ) \not = 0.

If there is a vertex on one side with Ei-degree \infty , then there must be infinitely many
vertices on the other side with nonzero Ei-degree. In other words, for every i /\in R

\| \=MT \| inf(Ai,\ast ) \not = 0 \rightarrow \| \=NT \| nz(Bi,\ast ) =\infty , and

\| \=NT \| inf(Bi,\ast ) \not = 0 \rightarrow \| \=MT \| nz(Ai,\ast ) =\infty .

Therefore, the formula Gen-\Psi 3,R
A| B(

\=M, \=N) holds.

We now prove 1 implies 2. Suppose Gen-\Psi 3,R
A| B(

\=M, \=N) holds in\scrN \infty . For simplicity,

we may assume R= [\ell ]. Since Gen-\Psi 2
AR,\ast | BR,\ast 

( \=M, \=N) holds, by Lemma C.5, there is

an AR,\ast | BR,\ast -biregular graph G0 = (U,V,E1, . . . ,E\ell ) with size \=M | \=N , where (GM2)
holds. We will show how to extend G0 to an A| B-biregular graph G with size \=M | \=N .
Without loss of generality, we may assume that R \not = [t]. Otherwise, G0 is already
A| B-biregular and we are done.

In the following we fix U = U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn as the witness
partition of AR,\ast | BR,\ast -biregularity of the graph G0. We will add new edges to make
G0 into an A| B-biregular graph. In the following when we say ``we make the Ei-degree
of a vertex u \in U correct,"" we mean that we will add Ei-edges adjacent to u so that
its Ei-degree becomes offset(Ai,j), where j is the index such that u \in Uj . Similarly
for vertex v \in V .

We can break this down further into three cases---analogously to scenario (GS4):
(a) U is infinite and V is finite.
(b) U is finite and V is infinite.
(c) U is infinite and V is infinite.

Case (b) is symmetric to case (a), so we will only consider cases (a) and (c).
Case (a): This case is a straightforward generalization of case (a) in (GS4). We

perform the following two steps.
\bullet Step 1: Making the Ei-degrees of vertices in V correct for every i /\in R.

For each i /\in R, let ki be any index such that Uki
is infinite. For every j \in [n],

for every vertex v \in Vj , we ensure that its degree is offset(Bi,j) by connecting
v with some nonadjacent vertices from the set Uki

---that is, vertices in Uki

that are not yet adjacent to any vertices in V . Since Uki has an infinite
supply of vertices, there are always such nonadjacent vertices for each vertex
v. The purpose of picking nonadjacent vertices is that, after this step, for
every vertex u\in U the sum

\sum 
i/\in R (the Ei-degree of u) is either 0 or 1.

\bullet Step 2: Making the degrees of vertices in U correct.
For each i /\in R, let V i,\infty =

\bigcup 
j\in inf(Bi,\ast )

Vj , i.e., the set of vertices in V that are

supposed to have \infty Ei-degree. Since \| \=NT \| inf(Bi,\ast ) \not = 0, the set V i,\infty is not
empty. Moreover, since \=M | \=N is extra-big-enough, the cardinality | V i,\infty | \geqslant 
t\delta (A,B).
Note that for each i /\in R, the sum

\sum 
i/\in R (the Ei-degree of u) of every vertex

u \in U is at most 1. For every j \in [m], for every vertex u \in Uj , we ensure
its Ei-degree is offset(Bi,j), by connecting u with some vertices in V i,\infty , for
every i /\in R. This is possible since offset(Bi,j)\leqslant \delta (A,B) for every j \in [m].

Case (c): For each i\in [t], define the sets
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TWO VARIABLE LOGIC WITH U.P. COUNTING 949

U i,nz :=
\bigcup 

j\in nz(Ai,\ast )

Uj and V i,nz :=
\bigcup 

j\in nz(Bi,\ast )

Vj ,

U i,\infty :=
\bigcup 

j\in inf(Ai,\ast )

Uj and V i,\infty :=
\bigcup 

j\in inf(Bi,\ast )

Vj .

Informally, U i,nz and V i,nz are the sets of vertices in U and V whose Ei-degree is
supposed to be nonzero, while U i,\infty and V i,\infty are the vertices in U and V whose
Ei-degree is supposed to be \infty .

Note that for each i /\in R, there are supposed to be vertices with infinite Ei-degree,
which gives us a lot of flexibility in constructing the Ei-edges. We can use a technique
similar to the one in scenario (GS4) from the previous appendix, which handled the
case where some vertex has infinite degree in the single-color case. Note that for each
i /\in R, we have one of the following:

(a) U i,nz is infinite and V i,nz is finite.
(b) U i,nz is finite and V i,nz is infinite.
(c) U i,nz is infinite and V i,nz is infinite.

That is, (a) holds for a subset of the colors, (b) holds for another subset, and (c)
holds for the remaining colors. Constructing the Ei-edges by itself for each i /\in R is
comparatively easy, as shown in scenario (GS4). The main technical difficulty occurs
when we try to make sure that the sets of constructed edges are still pairwise disjoint.
Note also that here we do not have any guarantees about how big the partitions and
degrees are in G0. This limits us in using techniques such as edge swapping, which
rely on having sufficiently many available edges.

In the following paragraphs, we will illustrate the new obstacle that arises. Sup-
pose there are i1, i2 /\in R, where i1 \not = i2, such that

\bullet U i1,nz is finite and U i2,nz is infinite;
\bullet V i1,nz is infinite and V i2,nz is finite.

Since i1 /\in R, the set U i1,nz contains vertices that are supposed to have infinite Ei1-
degree. Similarly, since i2 /\in R, the set V i2,nz contain vertices that are supposed to have
infinite Ei2-degree. Assume, for convenience, that U i1,nz \subseteq U i2,nz and V i2,nz \subseteq V i1,nz.
See Figure 9 for an illustration.

If we construct the Ei1-edges as in scenario (GS4), by connecting the vertices
in V i2,nz with the vertices in U i1,nz with Ei1 -edges, there is a possibility that every
vertex in U i1,nz is adjacent to every vertex in V i2,nz via Ei1-edges. Thus, when we
want to construct the Ei2-edges, we can no longer connect the vertices in U i1,nz with
the vertices in V i2,nz with Ei2-edges, but the vertices in V i2,nz are the only vertices
in G that are supposed to have nonzero Ei2-degree. In other words, there is no more
``room"" to construct the Ei2-edges. This issue will be circumvented by partitioning
U i1,\infty =X0 \uplus X1 and V i2,\infty = Y0 \cup Y1 and constructing the Ei1-edges so that

\bullet vertices in X0 are connected by Ei1 -edges only to vertices in Y0;
\bullet vertices in X1 are connected by Ei1 -edges only to vertices in Y1.

Then when we construct the Ei2 -edges, we will connect the vertices in X0 with the
vertices in Y1 and the vertices in X1 with the vertices in Y0. The rest of the proof is
devoted to the details of the construction.

Due to the technical difficulty described above, the following two sets of colors
Fnz-left, Fnz-right \subseteq [t] will need some special care:

Fnz-left := \{ i /\in R : \| \=MT \| nz(Ai,\ast ) is finite\} ,
Fnz-right := \{ i /\in R : \| \=NT \| nz(Bi,\ast ) is finite\} .
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950 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

U i2,\mathrm{n}\mathrm{z}

U i1,\mathrm{n}\mathrm{z}

U i1,\mathrm{n}\mathrm{z} is finite and
some vertices have \infty Ei1 -degree

V i1,\mathrm{n}\mathrm{z}

V i2,\mathrm{n}\mathrm{z}

V i2,\mathrm{n}\mathrm{z} is finite and
some vertices have \infty Ei2 -degree

Fig. 9. An illustration of the sets U i1,\mathrm{n}\mathrm{z}, U i2,\mathrm{n}\mathrm{z}, V i1,\mathrm{n}\mathrm{z}, and V i2,\mathrm{n}\mathrm{z}. When constructing the
Ei1-edges, we exploit the infinite Ei1-degree vertices in U i1,\mathrm{n}\mathrm{z}. Similarly, when constructing the
Ei2-edges, we exploit the infinite Ei2-degree vertices in V i2,\mathrm{n}\mathrm{z}. However, we have to make sure to
avoid the possibility that every vertex in U i1,\mathrm{n}\mathrm{z} is already adjacent to every vertex in V i2,\mathrm{n}\mathrm{z} via
Ei1-edges, thus, leaving ``no room"" to connect them via Ei2-edges. Note: color appears only in the
online article.

Intuitively, the set Fnz-left is the set of color i /\in R where there will only be finitely
many vertices with non- zero Ei-degree on the left-hand side. The set Fnz-right has
the same intuitive meaning w.r.t to the vertices on the right-hand side.

We argue that Fnz-left and Fnz-right are disjoint. For every i /\in R, at least one of
\| \=MT \| nz(Ai,\ast ) or \| \=NT \| nz(Bi,\ast ) is infinite. Moreover, since Gen-\Psi 3,R

A| B(
\=M, \=N) holds, we

have
\bullet \| \=NT \| inf(Bi,\ast ) = 0, \| \=MT \| inf(Ai,\ast ) \not = 0, and \| \=NT \| nz(Bi,\ast ) = \infty , for every i \in 
Fnz-left.
This is because for every i \in Fnz-left, \| \=MT \| nz(Ai,\ast ) is finite. Thus, the Ei-
degree of every vertex in V must be finite, i.e., \| \=NT \| inf(Bi,\ast ) = 0. Since
i /\in R, this means there are vertices on the left with \infty Ei-degree, i.e.,
\| \=MT \| inf(Ai,\ast ) \not = 0. Therefore, the number of vertices on the right with non-
zero Ei-degree must be infinite, i.e., \| \=NT \| nz(Bi,\ast ) =\infty ;

\bullet Similarly, \| \=MT \| inf(Ai,\ast ) = 0, \| \=NT \| inf(Bi,\ast ) \not = 0, and \| \=MT \| nz(Ai,\ast ) = \infty for
every i\in Fnz-right.

Therefore, Fnz-left and Fnz-right are disjoint.
Define the sets

UF\mathrm{n}\mathrm{z}-\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t},\infty :=
\bigcup 

i\in F\mathrm{n}\mathrm{z}-\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}

U i,\infty and V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty :=
\bigcup 

i\in F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}

V i,\infty .

Note that for every i\in Fnz-left, the set U
i,nz is finite. Since U i,\infty \subseteq U i,nz, the set U i,\infty 

is finite and hence so is the set UF\mathrm{n}\mathrm{z}-\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t},\infty . By analogous reasoning, V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty is
also finite. Because \=M | \=N is extra-big-enough for A| B, for every i \in Fnz-left, | U i,\infty | \geqslant 
t\delta (A,B) holds. Similarly, for every i\in Fnz-right, | V i,\infty | \geqslant t\delta (A,B).

The claim below is the formalization of the partition X0\uplus X1 and Y0\uplus Y1 described
above.

Claim C.7. Suppose Fnz-left, Fnz-right \not = \emptyset . Then
\bullet there is a partition X0 \uplus X1 of UFnz-left,\infty such that for every i \in Fnz-left, both
the sets X0 \cap U i,\infty and X1 \cap U i,\infty contain at least \delta (A,B) vertices;
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TWO VARIABLE LOGIC WITH U.P. COUNTING 951

\bullet there is a partition Y0\uplus Y1 of V Fnz-right,\infty such that for every i\in Fnz-right, both
Y0 \cap V i,\infty and Y1 \cap V i,\infty contain at least \delta (A,B) vertices.

As explained above, the main difficulty in constructing the Ei-edges for color
i\in Fnz-left is that | U i,\infty | is finite but | V i,nz| is infinite, and for color i\in Fnz-right, | V i,\infty | 
is finite but | U i,nz| is infinite. The claim implies that there are sets X0,X1, Y0, Y1---
each with enough vertices---allowing us to construct the Ei-edges for color i\in Fnz-left

as follows:
\bullet To make every vertex in Y0 have the correct Ei-degree, we connect it by
Ei-edges only to the vertices in X0 \cap U i,\infty .

\bullet To make every vertex in Y1 have the correct Ei-degree, we connect it by
Ei-edges only to the vertices in X1 \cap U i,\infty .

Note that for any color i\in Fnz-left, the set U
i,nz is finite, hence the degree of each vertex

in V i,nz must be finite, and bounded by \delta (A,B). Since for every color i \in Fnz-left,
the cardinalities of X0 \cap U i,\infty and X1 \cap U i,\infty are at least \delta (A,B), there are ``enough""
vertices to connect vertices in Y0 only with the vertices in X0 \cap U i,\infty and vertices in
Y1 only with vertices in X1 \cap U i,\infty via Ei-edges. After this construction, vertices in
X0 are not connected via Ei to any vertex in Y1 for any color i \in Fnz-left. Likewise,
vertices in X1 are not connected via Ei to any vertex in Y0, for any color i \in Fnz-left.
This leaves some room for the construction of Ei-edges for each color i\prime \in Fnz-right

where we connect vertices in X0 only to vertices in Y1\cap V i\prime ,\infty and vertices in X1 only
to vertices in Y0 \cap V i\prime ,\infty . See Figure 10 for an illustration.

Proof. (of Claim C.7) We prove the first item. The second one is similar. Initially,
X0 =X1 = \emptyset . To achieve the desired property, we will add vertices to X0 and X1 by
iterating on every i \in Fnz-left. On each iteration, we add at most \delta (A,B) vertices to
X0 and X1.

Suppose we are now iterating on some i\in Fnz-left. There are 4 cases:
\bullet Case 1: | X0 \cap U i,\infty | \geqslant \delta (A,B) and | X1 \cap U i,\infty | \geqslant \delta (A,B). In this case, we do

nothing and move on to the next i\in Fnz-left.
\bullet Case 2: | X0\cap U i,\infty | < \delta (A,B) and | X1\cap U i,\infty | < \delta (A,B). Observe that U i,\infty 

contains t\delta (A,B) \geqslant 2\delta (A,B) vertices. Thus, we can add some vertices from
U i,\infty to X0 and X1 so that X0 and X1 are still disjoint and

| X0 \cap U i,\infty | = | X1 \cap U i,\infty | = \delta (A,B).

\bullet Case 3: | X0 \cap U i,\infty | < \delta (A,B) and | X1 \cap U i,\infty | \geqslant \delta (A,B). Here, we see that

| U i,\infty | \geqslant t\delta (A,B) > | Fnz-left| \delta (A,B) > (| Fnz-left|  - 1)\delta (A,B) \geqslant | X1| .

Thus, U i,\infty contains at least \delta (A,B) vertices that are not yet in X0\cup X1. We
add some of these vertices into X0 so that | X0 \cap U i,\infty | = \delta (A,B).

\bullet Case 4: | X0 \cap U i,\infty | \geqslant \delta (A,B) and | X1 \cap U i,\infty | < \delta (A,B). This case is
symmetric to Case 3.

Now we are ready to extend G0 to an A| B-biregular graph G. Recall that G0

is an AR,\ast | BR,\ast -biregular graph where R \not = [t]. By (C.6) and (C.7), at least one
of U and V is infinite. We will show how to construct the Ei-edges in G for each
i\in [t] - R. The construction will yield an A| B-biregular graphG with witness partition
U =U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn that has the following properties:

(P1) For every j \in [n], where | Vj | =\infty , for every vertex u \in U , there are infinitely
many vertices in Vj that are not adjacent to u via any Ei-edge.
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952 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

(P2) Similarly, for every j \in [m] where | Uj | =\infty , for every vertex v \in V , there are
infinitely many vertices in Uj that are not adjacent to v via any Ei-edge.

An infinite set Vj/Uj that satisfies (P1)/(P2) is called a strongly infinite set in G.
An infinite A| B-biregular graph G is called strongly partitioned, if it has a witness
partition whose infinite sets are all strongly infinite.

Note that G0 is an infinite AR,\ast | BR,\ast -biregular graph and every vertex has a finite
degree. Thus G0 is already strongly partitioned.

There are two cases to consider, depending on whether both Fnz-left and Fnz-right

are not empty, or at least one of Fnz-left and Fnz-right is empty. We first consider the
case when both Fnz-left and Fnz-right are not empty.

LetX0\uplus X1 and Y0\uplus Y1 be the partition of UF\mathrm{n}\mathrm{z}-\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t},\infty and V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty in Claim C.7.
There are three steps.

Step 1: Construct the Ei-edges for each color i\in Fnz-left, similarly to Lemma B.6.
Step 2: Construct the Ei-edges for each color i\in Fnz-right in a manner symmetric

to Step 1.
Step 3: Construct the Ei-edges for each color i /\in R \cup Fnz-left \cup Fnz-right.

We detail each of these steps in the next paragraphs.
Step 1: Make the Ei-degree of every vertex correct for every i\in Fnz-left. This step

is divided into three substeps. The first two are similar to case (a) in Lemma B.6 and
the third is needed to leave enough room for the construction of the edges of colors
in Fnz-right.

(a) Make the Ei-degree of every vertex in U i,nz correct for every i\in Fnz-left.
For every u\in U i,nz, we ensure that its degree is correct by connecting it via Ei-
edges with some nonadjacent vertices from the set V i,nz - V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty ---that is,
vertices that are not yet adjacent to u via any Ei-edges where i\in Fnz-left\cup R.
Note that U i,nz is finite. Since V i,nz - V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty is infinite and G0 is strongly
partitioned, there is an infinite supply of vertices. So such nonadjacent ver-
tices always exist for every vertex u\in U i,nz. We also make sure that when we
add the new edges, there are still infinitely many vertices in each Vj that are
not yet adjacent to u for every j \in [m], where Vj is infinite (which is possible
since Vj is infinite). Thus, the graph stays strongly partitioned.
After this step, the degree of every vertex in V increases by at most 1. That
is,
\sum 

i\in F\mathrm{n}\mathrm{z}-\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}
degEi

(v) is either 0 or 1 for every v \in V  - V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty . Note also
that the degrees of vertices in V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty do not increase.

(b) Make the Ei-degree of every vertex in V i,nz  - V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty correct for every
i\in Fnz-left.
Since U i,nz is finite, the Ei-degree of every vertex in V i,nz is supposed to be
finite. Due to the size being extra-big-enough, U i,\infty contains at least \delta (A,B)
vertices. So, for every vertex v \in V i,nz  - V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty , we can add ``new"" Ei-
edges to make its Ei-degree correct by connecting it via Ei-edges with vertices
in U i,\infty for every i \in Fnz-left. Note that by definition, for every i \in Fnz-left,
vertices in U i,\infty have \infty Ei-degrees. So the new Ei-edges in this step will
violate their degree requirement.

(c) Make the Ei-degree of every vertex in V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty correct for every i\in Fnz-left.
Here it is useful to recall that for every i\in Fnz-left, every vertex in V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty 

is supposed to have finite Ei-degree since U i,nz is finite. This step is similar
to step (b), except that we connect via Ei-edges the vertices in Y0 to some
vertices in X0, and the vertices in Y1 to some vertices in X1 for every i \in 
Fnz-left. Since X0 \cap U i,\infty and X1 \cap U i,\infty contains at least \delta (A,B) vertices,
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TWO VARIABLE LOGIC WITH U.P. COUNTING 953

there are enough vertices inX0\cap U i,\infty andX1\cap U i,\infty that we may connect each
v \in V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty with to make the Ei-degree of v correct for every i\in Fnz-left.
After this step, vertices in X0 are not adjacent via Ei-edges to vertices in Y1
for every i \in Fnz-left. Similarly, vertices in X1 are not adjacent via Ei-edges
to vertices in Y0 for every i \in Fnz-left. This observation will be important in
the next step. See Figure 10 for an illustration.

Step 2: Make the Ei-degree of every vertex correct for every i\in Fnz-right. This step
consists of three Steps (2(a))--(2(c)) which are symmetric to Steps (1(a))--(1(c)), where
the role of U i,nz is replaced by V i,nz, U i,\infty by V i,\infty , and V F\mathrm{n}\mathrm{z}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t},\infty by UF\mathrm{n}\mathrm{z}-\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t},\infty . The
difference is in Step (1(c)). To make the Ei-degree of vertices in UF\mathrm{n}\mathrm{z}-\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t},\infty correct,
for every i \in Fnz-right, we connect the vertices in X0 to some vertices in Y1, and the
vertices in X1 to some vertices in Y0. Here it is important that vertices in X0 are not
adjacent to vertices in Y1 via Ei-edges for any i \in Fnz-left. Since Y1 \cap V i,\infty contains
at least \delta (A,B) vertices, there are still enough vertices in Y1 that can be connected
to each u\in X0 to make the Ei-degree of u correct for every i\in Fnz-right.

Step 3: Make the Ei-degree of every vertex correct for every i /\in R \cup Fnz-left \cup 
Fnz-right. This step is similar to case (c) in Lemma B.6. Let u1, u2, . . . and v1, v2, . . .
be an enumeration of the vertices in U and V . After Step 2, the graph G is still
strongly partitioned. In the following we fix a color i /\in R \cup Fnz-left \cup Fnz-right. We
make the Ei-degree of each vertex u\ell and v\ell correct, where \ell ranges from 1 to \infty . We
work by induction on \ell , where the inductive invariant is that after the \ell th iteration,
the Ei-degrees of ul, v1, . . . , u\ell , v\ell are already correct. The process is as follows:

\bullet We pick some vertices in V i,nz that are not yet adjacent to u\ell via any E-edges.
We call these vertices the nonadjacent vertices and we pick some of them and
connect them to u\ell via Ei-edges to make the Ei-degree of u\ell correct. For

X0

X0 \cap U i,\infty 

\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{v}\mathrm{i}\mathrm{a} Ei-\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{s}

X1

X1 \cap U i,\infty 

\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{c}\mathrm{e}
\mathrm{n}\mathrm{t} \mathrm{v}\mathrm{i}\mathrm{a} Ei-\mathrm{e}\mathrm{d}\mathrm{g}

\mathrm{e}\mathrm{s}

v

v\prime 

Y0

Y1

Fig. 10. An illustration for the construction of edges between X0 \cup X1 and Y0 \cup Y1. For each
color i\in Fnz-left, each v \in Y0 is connected by Ei-edges only to vertices in X0\cap U i,\infty and each v\prime \in Y1

is connected by Ei-edge only to vertices in X1 \cap U i,\infty . This makes vertices in X0 not connected via
Ei-edges to any vertex in Y1 for any color i \in Fnz-left. Likewise, vertices in X1 are not connected
via Ei to any vertex in Y0 for any color i \in Fnz-left. This leaves some ``space"" for the construction
of Ei-edges for color i \in Fnz-right, where the vertices in X0 will be connected to some vertices in Y1

and the vertices in X1 to some vertices in Y0. Note: color appears only in the online article.
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954 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

this purpose, we can choose any vertices that are not v1, . . . , v\ell and are not
adjacent to any of u1, . . . , u\ell . Such vertices always exist, since the graph G is
strongly partitioned.
Note that if the Ei-degree of u\ell is supposed to be infinite, we have to pick
infinitely many nonadjacent vertices. So when we pick these vertices, we also
make sure that there are still infinitely many vertices in each Vj that are still
not adjacent to all u1, . . . , u\ell , for every j \in [m], where Vj is infinite. Thus,
the graph is strongly partitioned.

\bullet Similarly, we pick nonadjacent vertices in U i,nz and connect them to v\ell to
make the Ei-degree of v\ell correct, where nonadjacent vertices are those in
u1, . . . , u\ell are not adjacent to any of v1, . . . , v\ell .
Again, such nonadjacent vertices always exist since the graph is strongly
partitioned, and we can always pick the new vertices so that the graph stays
strongly partitioned after this iteration.

We perform the iteration above for each color i /\in R\cup Fnz-left\cup Fnz-right. This completes
the construction of an A| B-biregular graph G with size \=M | \=N and witness partition
U = U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn for the case when both Fnz-left and Fnz-right

are not empty. For the case when Fnz-left = \emptyset , we can do as above, but skip Step 1.
Reasoning along the same lines, for the case when Fnz-right = \emptyset , we can skip Step 2.
This completes the proof of Lemma C.6.

Remark C.8. Note that in the construction of the A| B-biregular graph G in
Lemma C.6, we construct the Ei-edges for every i /\in R by iterating on every vertex in
G. On each iteration, we preserve the ``strongly partitioned"" property of the graph
G. This implies that for every finite subset W of vertices in G, we have

\bullet for every Vj such that Vj is infinite, there are infinitely many vertices in Vj
that are not adjacent to any vertex in W ;

\bullet similarly, for every Uj such that Uj is infinite, there are infinitely many ver-
tices in Uj that are not adjacent to any vertex in W .

This property will be useful in section D when the completeness requirement is en-
forced.

To wrap up section C.2, we define formula Gen-\Psi A| B(\=x, \=y) for simple matrices A
and B as follows, \bigvee 

R\subseteq [t]

Gen-\Psi 4,R
A| B(\=x, \=y),(C.8)

where each Gen-\Psi 4,R
A| B(\=x, \=y) is defined in (C.5). This formula Gen-\Psi A| B(\=x, \=y) captures

all the big-enough sizes of A| B-biregular graphs, as stated formally as Lemma C.9.

Lemma C.9. For every pair of simple matrices A,B, and for each pair of size
vectors \=M, \=N with \=M | \=N extra-big-enough for A| B, the following holds: the formula
Gen-\Psi A| B( \=M, \=N) holds in \scrN \infty if and only if there is an A| B-biregular graph with size
\=M | \=N .

Proof. Let A and B be simple matrices with t rows and \=M | \=N be big-enough for
A| B. Suppose there is an A| B-biregular graph G= (U,V,E1, . . . ,Et) with size \=M | \=N .
Let R = \{ i : every vertex in V has finite Ei-degree\} . By Lemma C.6, \Psi 4,R

A| B(
\=M, \=N)

holds. Thus, Gen-\Psi 4
A| B(

\=M, \=N) holds in \scrN \infty .

Conversely, suppose Gen-\Psi A| B( \=M, \=N) holds in \scrN \infty . Let R be such that
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TWO VARIABLE LOGIC WITH U.P. COUNTING 955

Gen-\Psi 4,R( \=M, \=N) holds. By Lemma C.6, there is an A| B-biregular graph with size
\=M | \=N , where R= \{ i : every vertex in V has finite Ei-degree\} .

The remark below will be useful for the complexity analysis later on.

Remark C.10. Every formula Gen-\Psi 4,R
A| B(\=x, \=y) is a disjunction of the formulas

Gen-\Psi 3,R\prime 

AR,\ast | BR,\ast 
(\=x, \=y) for every subset R\prime of the rows in AR,\ast | BR,\ast . In turn, each

formula Gen-\Psi 3,R\prime 

AR,\ast | BR,\ast 
(\=x, \=y) is a disjunction of the formulas Gen-\Psi 2,R\prime \prime 

AR\prime ,\ast | BR\prime ,\ast 
(\=x, \=y)

for every subset R\prime \prime of the rows in AR\prime ,\ast | BR\prime ,\ast . Pulling out all the disjunctions,
the formula Gen-\Psi A| B(\=x, \=y) can be written as a disjunction

\bigvee 
i\psi i(\=x, \=y), where each

\psi i(\=x, \=y) is a conjunction of O(t) equations and inequations (for short, ``conjunction of
(in)equations"").

C.3. Encoding of not extra-big-enough components for simple matrices.
The encoding of not extra-big-enough for the general case is a routine adaptation of
the one in subsection 5.4. We omit the details. Disjoining this to the extra-big-enough
formula completes the description for simple matrices without the completeness re-
quirement.

The remark below will also be used in the complexity analysis later on.

Remark C.11. Let t be the number of rows in matrices A and B. By Remark C.10,
the formula Gen-\Psi A| B(\=x, \=y) is a disjunction of conjunctions of O(t) (in)equations. By
an adaptation of Remark 5.12, each formula \Phi i(\=x, \=y) for the not extra-big-enough cases
is a disjunction of conjunctions of O(t4\delta (A,B)4) (in)equations. Thus, the formula
\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y), which is a disjunction of Gen-\Psi A| B(\=x, \=y) and all the \Phi i(\=x, \=y)'s, can be
written as a disjunction of conjunctions of O(t4\delta (A,B)4) (in)equations.

Appendix D. The extension of section 6 to the general case. In sec-
tion 6 we constructed a formula that captures all possible finite sizes of complete
A| B-biregular graphs, where A and B are simple degree matrices. There we argued
that it was sufficient to consider only the case when A| B is a good pair (as defined in
Definition 6.1), since otherwise there are only some fixed number of possible sizes of
A| B-biregular graphs, which can be enumerated.

In this appendix we will extend the formulas in section 6 to the case where graphs
may be infinite. As in section 6, we only need to consider the cases where A| B is a good
pair. There are two new cases to consider. The first (subsection D.1) concerns graphs
where both sides have infinitely many vertices, while in the second (subsection D.2)
there are infinitely many vertices on exactly one side.

D.1. The case when both sides have infinitely many vertices. Let A be a
matrix with t rows. We write \sansc \sanso \sansl \infty (A\ast ,j) to denote the set \{ i :Ai,j =\infty \} . For R\subseteq [t],
we let J(R,A) = \{ j : \sansc \sanso \sansl \infty (A\ast ,j) =R\} .

Definition D.1. Let A and B be simple matrices with t rows. Let m and n
be the number of columns of A and B. For size vectors \=M = (M1, . . . ,Mm) and
\=N = (N1, . . . ,Nn), we say that \=M | \=N is a good color size for A| B if for every R\subseteq [t],
we have

\bullet \| \=MT \| J(R,A) = 0 or \geqslant \delta (A,B) + 1,
\bullet \| \=NT \| J(R,B) = 0 or \geqslant \delta (A,B) + 1.

We will show that a ``good color size"" of a complete A| B-biregular graph implies
a certain property of the matrices A and B which will be useful later on.
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956 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

Lemma D.2. Let A| B be a pair of simple matrices with t rows. Suppose there is
a complete A| B-biregular graph G= (U,V,E1, . . . ,Et) with size \=M | \=N , where \| \=MT \| =
\| \=NT \| =\infty and \=M | \=N is a good color size for A| B. Then

\bullet for every vertex u\in U , there is i\in [t] such that degEi
(u) =\infty and row i in B

contains a periodic entry;
\bullet for every vertex v \in V , there is i\prime \in [t] such that degEi\prime 

(v) =\infty and row i\prime in
A contains a periodic entry.

Note that since A and B are simple matrices and \infty is regarded as a periodic
entry, the conclusion implies that row i and i\prime in A and B can contain only periodic
entries. So the lemma implies that A| B is a good pair of simple matrices.

Proof. We first prove an easy combinatorial claim.

Claim D.3. Let \scrU be an infinite set and let \scrZ be a (not necessarily finite) family
of subsets of \scrU such that every Z \in \scrZ is cofinite in \scrU (i.e., \scrU  - Z is finite). Then
every finite subset of \scrZ has a nonempty intersection.

Proof. Let Z1, . . . ,Zn \in \scrZ . By de Morgan's law,
\bigcap n

j=1Zj = \scrU  - (
\bigcup n

j=1 \scrU  - Zj).
Since each Zj is cofinite in \scrU , the claim follows immediately.

We prove the first bullet item of the lemma, with the second proven analogously.
Let U = U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn be the witness partition. For a vertex
u \in U in G, let \Gamma (u) denote the set of vertices adjacent to u by some Ei-edge, where
the Ei-degree of u is infinite. For each u \in U , every element of V is connected to
u by some Ei-edge (since G is a complete bipartite graph), and thus the number of
elements of V not in \Gamma (u) is finite.

Suppose u \in Uj for some j \in [m] and let R = \sansc \sanso \sansl \infty (A\ast ,j). Since \=M | \=N is a
good color size for A| B, we have \| \=MT \| J(R,A) \geqslant \delta (A,B) + 1. We pick k vertices
u1, . . . , uk \in 

\bigcup 
j\in J(R,A)Uj , where u1 = u and k \geqslant \delta (A,B) + 1. By the claim above,

there is a vertex v in the intersection
\bigcap 

j\in [k] \Gamma (uj). This means v is adjacent to all
vertices u1, . . . , uk via some Ei-edges, where i \in R. Since k > \| fin-offset(B)\| , there
is Ei \in R, where degEi

(v) is a periodic entry of B. Since B is a simple matrix, this
implies that row i in B contains only periodic entries. Note that Ei \in R, so the
Ei-degree of u is \infty . This completes the proof of the first bullet item.

Let A and B be simple matrices with m and n columns, respectively. We denote
by (\scrC 1) and (\scrC 2) the following constraints:

(\scrC 1) For every j \in [m] where Mj \not = 0, there is a color i \in [t] such that Ai,j = \infty 
and Bi,\ast contains only periodic entries.

(\scrC 2) For every j \in [n] where Nj \not = 0, there is a color i\in [t] such that Bi,j =\infty and
Ai,\ast contains only periodic entries.

Note that both (\scrC 1) and (\scrC 2) are Presburger definable and formalize the properties
from items (1) and (2) in Lemma D.2.

We define \xi 
(1)
A| B(\=x, \=y), where \=x= (x1, . . . , xm) and \=y= (y1, . . . , yn), as follows:

\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) \wedge \| \=xT \| = \| \=yT \| =\infty \wedge (\scrC 1) \wedge (\scrC 2)(D.1)

\wedge 
\bigwedge 

R\subseteq [t]

\Bigl( 
\| \=xT \| J(R,A) = 0 \vee \| \=xT \| J(R,A) \geqslant \delta (A,B) + 1

\Bigr) 
(D.2)

\wedge 
\bigwedge 

R\subseteq [t]

\Bigl( 
\| \=yT \| J(R,B) = 0 \vee \| \=yT \| J(R,B) \geqslant \delta (A,B) + 1

\Bigr) 
.(D.3)

Above \sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) is the characterizing formula for not-necessarily-complete bireg-
ular graphs. Intuitively, (D.2) and (D.3) state that \=x| \=y is a good color size.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 957

Lemma D.4. For every pair of simple matrices A, B and for every pair of size
vectors \=M , \=N , the formula \xi 

(1)
A| B(

\=M, \=N) holds in \scrN \infty if and only if there is a complete

A| B-biregular graph of size \=M | \=N , where \| \=MT \| = \| \=NT \| =\infty and \=M | \=N is a good color
size for A| B.

Proof. That \xi 
(1)
A| B(

\=M, \=N) holding is necessary follows from Lemma D.2. Now we

show that it is also a sufficient condition. Suppose \xi 
(1)
A| B(

\=M, \=N) holds in\scrN \infty , which im-

plies there is a (not-necessarily-complete) A| B-biregular graph G= (U,V,E1, . . . ,Et)
with size \=M | \=N . Let U =U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn be the witness partition.
By Remark C.8, the graph G has the following property:

(\scrP ) For every finite subset W \subseteq U , there are infinitely many vertices in V that
are not adjacent to any vertex in W .
While for every finite subset W \subseteq V , there are infinitely many vertices in U
that are not adjacent to any vertex in W .

We enumerate the elements u1, u2, . . . and v1, v2, . . . in U and V , respectively. We
will make G a complete A| B-biregular graph by iterating through all \ell = 1,2, . . .,
where on each iteration \ell , we first add ``new"" edges so that u\ell is adjacent to all the
vertices v\ell , v\ell +1, . . . and then some more ``new"" edges so that v\ell is adjacent to all
the vertices u\ell +1, u\ell +2, . . .. These new edges will preserve the A| B-biregularity of the
graph G and as the iteration index \ell goes to \infty , the graph G becomes complete.

Before we proceed to the construction, we first explain the main idea behind
making u\ell adjacent to all the vertices v\ell , v\ell +1, . . .. Choose i0 \in [t] such that the Ei0-
degree of u\ell is \infty and the row Bi0,\ast contains only periodic entries---such i0 exists due
to (\scrC 1). We add new Ei0 -edges so that

(a) u\ell is adjacent to all the vertices v\ell , v\ell +1, . . . (that are not yet adjacent to u\ell )
via Ei0 -edges;

(b) for every vertex vh \in \{ v\ell , v\ell +1, . . .\} 
\bullet if the Ei0-degree of vh is not \infty , the new Ei0-edges increase it by p;
\bullet if the Ei0-degree of vh is \infty , there are either 1 or p new Ei0-edges adjacent

to vh; in particular the degree is still infinite;
(c) for every vertex uh \in \{ u\ell +1, v\ell +2, . . .\} , either there are no new Ei0 -edges

added, or the Ei0-degree increases by a multiple of p.
Adding new edges to make v\ell adjacent to all the vertices u\ell +1, u\ell +2, . . . can be done
in the same manner. The purpose of (a) is to make G complete while the purpose of
(b) and (c) is to preserve the A| B-biregularity of G.

Since U (resp., V ) is countable, every vertex u \in U (resp., v \in V ) has a finite
index \ell such that u\ell = u (resp., v\ell = v). After the \ell th iteration we do not add any
more edges adjacent to u\ell and v\ell . Therefore, for every vertex w \in U \cup V for every
color i\in [t], if degEi

(w) is finite in the original graph G, it stays finite as the iteration
index \ell goes to \infty . If degEi

(u) is \infty in the original graph G, it stays \infty , since we are
only adding edges. Thus, if the original graph G is A| B-biregular, as the iteration
index \ell goes to \infty , the resulting graph is still A| B-biregular.

Note also that due to (b) and (c), after the \ell th iteration, the degree of every
vertex in \{ u\ell +1, u\ell +2, . . .\} \cup \{ v\ell +1, v\ell +2, . . .\} increases only by some finite number, i.e.,
by 0, 1, or a multiple of p. Thus, property (\scrP ) still holds for every finite subset
W \subseteq \{ u\ell +1, u\ell +2, . . .\} \cup \{ v\ell +1, v\ell +2, . . .\} in the sense that

for every finite subsetW \subseteq \{ u\ell +1, u\ell +2, . . .\} , there are infinitely many
vertices in V that are not adjacent to any vertex in W . While for
every finite subset W \subseteq \{ v\ell +1, v\ell +2, . . .\} , there are infinitely many
vertices in U that are not adjacent to any vertex in W .
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958 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

We will call this the nonadjacency invariant.
We devote the rest of the proof to the details on how to add edges adjacent to

vertex u\ell . The argument for vertex v\ell is handled symmetrically. Let u\ell be a vertex
in Uj . By constraint (\scrC ), there is some color i0 \in [t], where Ai0,j = \infty and Bi0,\ast 
contains only periodic entries. Since A is a simple matrix, row i0 in A also contains
periodic (possibly infinite) entries. We will add Ei0-edges so that u\ell is adjacent to
every vertex in V . Note, however, that some care is needed, since the Ei0-degree of
some vertices---those with finite Ei0 -degree bound---can only increase by a multiple
of p.

Let Z denote the set of vertices in V that are not adjacent to vertex u\ell . By the
nonadjacency invariant, the set Z is infinite. Let Z = Zfin \cup Z\infty be a partition of Z
where every vertex in Zfin has finite Ei0-degree and every vertex in Z\infty has infinite
Ei0-degree.

First, we add Ei0-edges between u\ell and every vertex in Z. At this point, vertex u\ell 
is already adjacent to every vertex in V . Note that the Ei0-degree of each vertex in Z\infty 
stays infinite. However, the Ei0-degree of vertices in Zfin increases by 1. So we need
to add additional edges to make it increase further by (p - 1). There are two cases.

\bullet Case 1: | Zfin| is finite. Since the set Z is infinite, we infer that | Z\infty | is infinite.
Let Y be a finite subset of Z\infty so that the sum | Zfin| + | Y | is some multiple
of p. By the nonadjacency invariant, there are infinitely many vertices in U
that are not adjacent to any vertex in Zfin \cup Y . We pick (p - 1) such vertices
w1, . . . ,wp - 1 and add Ei0 -edges for every pair in \{ w1, . . . ,wp - 1\} \times (Zfin \cup Y ).
That is, \{ w1, . . . ,wp - 1\} \times (Zfin \cup Y ) becomes a complete bipartite graph of
Ei0-edges. Note that the Ei0-degrees of vertices w1, . . . ,wp - 1 increase by a
multiple of p, since | Zfin \cup Y | is a multiple of p. Moreover, the Ei0 -degrees
of vertices in Zfin increase further by (p - 1). The Ei0 -degrees of vertices in
Y remain infinite. Thus, after this construction G is still A| B-biregular. See
Figure 11 for an illustration.

U
u1

u\ell 

w1

wp - 1

V
v1

v\ell 

Zfi\mathrm{n}

Y

Z\infty 

Fig. 11. An illustration for the choices of w1, . . . ,wp - 1 and Y \subseteq Z\infty to construct the complete
A| B-biregular graph when | Zfin| is finite. First, we connect u\ell with all the vertices in Zfin \cup Z\infty via
an Ei0 -edge. Then, to ensure the degrees of vertices in Zfin increase by a multiple of p, we pick
w1, . . . ,wp - 1 and connect them via Ei0 -edges with all the vertices in Zfin \cup Y , where Y \subseteq Z\infty such
that | Zfin| + | Y | is a multiple of p. Note: color appears only in the online article.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

0/
25

 to
 8

6.
3.

37
.1

38
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



TWO VARIABLE LOGIC WITH U.P. COUNTING 959

\bullet Case 2: | Zfin| is infinite. We partition Zfin into infinitely many pairwise
disjoint sets Z1 \uplus Z2 \uplus \cdot \cdot \cdot , where | Zh| = p for each h = 1,2, . . .. We increase
the Ei0-degrees of vertices in each Zh by iterating the following process for
each h= 1,2, . . .: we pick a finite set X \subseteq U such that | X| = p - 1 and every
vertex in X is not adjacent to any vertex in Z1\cup \cdot \cdot \cdot \cup Zh. Such a set X exists,
by the nonadjacency invariant. Then we add Ei0-edges between every pair in
Zh \times X. That is, Zh \times X becomes a complete bipartite graph of Ei0-edges.
See Figure 12 for an illustration. After this construction, the Ei0 -degree of
each vertex in each Zh increases further by (p  - 1). Since each | Zh| = p,
we also increase the Ei0 -degrees of some vertices in U by p. Thus, G is still
A| B-biregular.

Lemmas D.4 and D.13 deal with all the \=M | \=N that are good color sizes for A| B.
To capture the sizes that are not good color sizes, we can use fixed size encoding, as
in subsection 5.4. Note that if \=M | \=N is not a good color size for A| B, there is R\subseteq [t]
such that

1\leqslant \| \=xT \| J(R,A) \leqslant \delta (A,B) or 1\leqslant \| \=yT \| J(R,B) \leqslant \delta (A,B).

Thus, we can fix \| \=xT \| J(R,A) or \| \=yT \| J(R,B) to some r, where 1\leqslant r \leqslant \delta (A,B). Recall
that J(R,A) is a subset of columns of A, while J(R,B) is a subset of the columns
of B. Thus in fixing one of these norms, we are focusing on complete A| B-biregular
graphs G= (U,V,E1, . . . ,Et) with sizes \=M | \=N , where the sum of some components in
\=M (or \=N) is fixed to r\leqslant \delta (A,B). For example, we can define the formula \Phi r

A| B(\=x, \=y)

such that for every \=M | \=N , \Phi r
A| B(

\=M, \=N) holds if and only if there is a complete A| B-

biregular graph with size \=M | \=N , where \| \=xT \| J(R,A) = r. The construction of \Phi r
A| B(\=x, \=y)

is very similar to the one in section 5.4, so we omit it.

U
u1

u\ell 

X

V
v1

v\ell 

Zfi\mathrm{n}Z1

Zh

Z\infty 

Fig. 12. An illustration for the choices of w1, . . . ,wp - 1 and Y \subseteq Z\infty to construct the complete
A| B-biregular graph when | Zfin| is infinite. First, we connect ul with all the vertices in Zfin \cup Z\infty 
via an Ei0 -edge, thus, increasing the Ei-degree of vertices in Zfin \cup Z\infty by 1. Then, we partition
Zfin into Z1 \uplus Z2 \uplus \cdot \cdot \cdot , where each Zh has cardinality p. To make sure that the Ei0-degrees in Zfin

increase by a multiple of p, for each h = 1,2, . . ., we pick a set X \subseteq U s.t. | X| = p - 1 and every
vertex in X is not adjacent to any vertex in Z1 \cup \cdot \cdot \cdot \cup Zh. Then, we connect every vertex in X with
every vertex in Zh via Ei0-edges. Note: color appears only in the online article.
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To wrap up this subsection, we define the formula \sansc -\sansb \sansi \sansr \sanse \sansg \infty ,\infty 
A| B (\=x, \=y) for simple

matrices A and B as follows,

\xi 
(1)
A| B(\=x, \=y) \vee \varphi (\=x, \=y) \vee 

\bigvee 
j

\phi j(\=x, \=y),(D.4)

where \xi 
(1)
A| B(\=x, \=y) is defined in (D.1)--(D.3), \varphi (\=x, \=y) captures all the sizes \=M | \=N that are

not good color sizes for A| B, and the disjunction
\bigvee 

j \phi j(\=x, \=y) enumerates all possible

sizes \=M | \=N when A| B is not a good pair. By Remark 6.2, when A| B is not a good
pair, complete A| B-biregular graphs can only have sizes \=M | \=N , where \| \=MT \| +\| \=NT \| \leqslant 
2\delta (A,B). It is clear that this remark holds regardless of whether an \infty entry is
allowed. Since there are only finitely many sizes satisfying this upper bound, they
can be enumerated. The formula \sansc -\sansb \sansi \sansr \sanse \sansg \infty ,\infty 

A| B (\=x, \=y) captures the sizes of all possible

A| B-biregular graphs where both sides have infinitely many vertices.

Remark D.5. We will again make some further observations that will be important
only for the complexity analysis. Suppose t is the number of rows in matrices A and
B. By Remark C.11, \xi 

(1)
A| B(\=x, \=y) is a disjunction of conjunctions of O(t4\delta (A,B)4)

(in)equations.
As in Remark 5.12, the encoding of components of a fixed size r yields O(rt)

(in)equations. Since r \leqslant \delta (A,B) and there are 2t subsets R\subseteq [t], the formula for the
fixed size encoding can be written as a disjunction of conjunctions of O(2tt\delta (A,B))
(in)equations. So, the whole formula \sansc -\sansb \sansi \sansr \sanse \sansg \infty ,\infty 

A| B (\=x, \=y) can be rewritten as a disjunction

of conjunctions of O(2tt4\delta (A,B)4) (in)equations.

D.2. The case when exactly one side has only finitely many vertices.
In this subsection we will give the formula that captures the sizes of all possible A| B-
biregular graphs, where on the left-hand side there are infinitely many vertices and on
the right-hand side there are only finitely many vertices. Here the degree matrices A
and B can be arbitrary degree matrices, i.e., we drop the assumption that they must
be simple matrices.

In a first step (subsection D.2.1) we consider the case where the degree matrix B
is restricted to a very special form and the size vectors on the left contain only \infty . In
a second step (subsection D.2.2) we show that capturing the sizes of A| B-biregular
graphs, where exactly one side has infinitely many vertices, can be reduced to the
finite case and the case in subsection D.2.1.

D.2.1. A special case. We fix matrices A and B (with t rows) with the following
properties:

\bullet A contains only finite entries.
\bullet Each entry in B is either 0 or \infty .
\bullet Every row and every column in B has \infty entry.

We note that for such A and B, in a complete A| B-biregular graph it is necessary
that the left side has infinitely many vertices and the right side has only finitely many.
We will define a formula that captures all possible size vectors \=N , where \| \=NT \| \not =\infty 
and there is a complete A| B-biregular graph with size (\infty , . . . ,\infty )| \=N .

Let m and n be the number of columns in A and B. We start with a simple
observation.

Remark D.6. Let G= (U,V,E1, . . . ,Et) be a complete A| B-biregular graph with
witness partition U =U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn. Let u\in U and let j be the
index such that u\in Uj .
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TWO VARIABLE LOGIC WITH U.P. COUNTING 961

For each i\in [t], let Zi be the set of vertices adjacent to u via Ei-edges. Since G is
complete, Z1 \uplus \cdot \cdot \cdot \uplus Zt partitions the set V . Moreover, since G is A| B-biregular, for
every i\in [t],

\bullet | Zi| =Ei-degree of u=Ai,j ;
\bullet every vertex in Zi has \infty Ei-degree.

Recall that every entry in B can only be either 0 or \infty , hence, the Ei-degree
of every vertex in V can only be 0 or \infty .

We will call the partition Z1 \uplus Z2 \uplus \cdot \cdot \cdot \uplus Zt, the partition of V according to u. As
we will see later, we can construct a Presburger formula that defines the sizes of the
partitions of V according to vertices in Uj for every vertex in Uj .

For j \in [m] for each k \in [t], define the formula \varphi k,j(z1, . . . , zk, s1, . . . , sn) induc-
tively on k as follows:

\bullet When k= 1, \varphi 1,j(z1, s1, . . . , sn) is given by

z1 = s1 + \cdot \cdot \cdot + sn =A1,j \wedge 
\bigwedge 

h\in [n]

sh \not = 0\rightarrow B1,h =\infty .

\bullet When k\geqslant 2, \varphi k,j(z1, . . . , zk, s1, . . . , sn) is given by

\exists c1 \cdot \cdot \cdot \exists cn c1 + \cdot \cdot \cdot + cn = zk \wedge 
\bigwedge 

h\in [n]

ch \not = 0 \rightarrow Bk,h =\infty 

\wedge \varphi k - 1,j(z1, . . . , zk - 1, s1  - c1, . . . , yn  - sn).

Finally, define the formula \xi A| B(\=y), where \=y= (y1, . . . , yn),

\xi A| B(\=y) :=
\bigwedge 

j\in [m]

\exists z1 \cdot \cdot \cdot \exists zt \varphi t,j(z1, . . . , zt, \=y).(D.5)

We will show that \xi A| B(\=y) captures all size vectors \=N such that there are complete
A| B-biregular graph with size (\infty , . . . ,\infty )| \=N . The variables z1, . . . , zt in the formula
\varphi t,j(z1, . . . , zt, y1, . . . , yn) represent the cardinalities | Z1| , . . . , | Zt| for the partition Z1\uplus 
\cdot \cdot \cdot \uplus Zt according to a vertex in Uj . We start with an easy lemma, proven by induction
on k.

Lemma D.7. For every k \in [t] for every z1, . . . , zk, s1, . . . , sn \in \BbbN , if \varphi k,j(z1, . . . , zk,
s1, . . . , sn) holds in \scrN \infty , then z1 + \cdot \cdot \cdot + zk = s1 + \cdot \cdot \cdot + sn.

Lemma D.8. For every size vector \=N , where \| \=NT \| \not = \infty , the formula \xi A| B( \=N)
holds in \scrN \infty precisely when there is a complete A| B-biregular graph with size (\infty , . . . ,
\infty )| \=N .

Proof. Let \=N = (N1, . . . ,Nn) be a size vector where none of N1, . . . ,Nn are \infty .
We first show that \xi A| B( \=N) holding in \scrN \infty is a necessary condition. Suppose there
is a complete A| B-biregular graph G= (U,V,E1, . . . ,Et) with size (\infty , . . . ,\infty )| \=N . Let
U =U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn be the witness partition.

We will show that for every j \in [m], \varphi t,j(z1, . . . , zt, \=N) holds for some z1, . . . , zt.
To this end, let j \in [m]. We pick a vertex u\in Uj and let Z1 \uplus \cdot \cdot \cdot \uplus Zt be the partition
of V according to u. Let zi = | Zi| , for every i\in [t].

The next claim can be proven by straightforward induction on k.

Claim D.9. For every k \in [t], the formula \varphi k,j(z1, . . . , zk, s1, . . . , sn) holds in
\scrN \infty , where sh = | Vh \cap (Z1 \cup \cdot \cdot \cdot \cup Zk)| for each h\in [n].
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962 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

In particular, when k = t, sh = | Vh \cap (Z1 \cup \cdot \cdot \cdot \cup Zt)| = | Vh| =Nh for each h \in [n],
since Z1 \cup \cdot \cdot \cdot \cup Zt = V . Therefore, \varphi t,j(z1, . . . , zt, \=N) holds. Thus, \xi A| B \=N holds.

We now prove that \xi A| B( \=N) holding is a sufficient condition. Suppose \xi A| B( \=N)
holds, where \=N = (N1, . . . ,Nn). Let U1, . . . ,Um be pairwise disjoint infinite sets and
let V1, . . . , Vn be pairwise disjoint sets, where | Vh| =Nh for each h\in [n].

We will construct a complete A| B-biregular graph G= (U,V,E1, . . . ,Et) with size
(\infty , . . . ,\infty )| \=N and witness partition U =U1 \uplus \cdot \cdot \cdot \uplus Um and V = V1 \uplus \cdot \cdot \cdot \uplus Vn.

Let j \in [m]. Since \xi A| B( \=N) holds, there is z1, . . . , zt such that \varphi t,j(z1, . . . , zt, \=N)
holds.

The following claim is proven by straightforward induction on k.

Claim D.10. For every k \in [t], there are pairwise disjoint sets Z1, . . . ,Zk \subseteq V
such that for every i\in [k] zi = | Zi| =Ai,j and Zi \subseteq 

\bigcup 
h\in inf(Bi,\ast )

Vh.

In particular, when k= t, we have pairwise disjoint sets Z1, . . . ,Zt \subseteq V such that
for every i \in [t] zi = | Zi| = Ai,j and Zi \subseteq 

\bigcup 
h\in inf(Bi,\ast )

Vh. By Lemma D.7, the sum
z1 + \cdot \cdot \cdot + zt = | Z1| + \cdot \cdot \cdot + | Zt| =N1 + \cdot \cdot \cdot +Nn. Hence, Z1 \uplus \cdot \cdot \cdot \uplus Zt is a partition of
V . For every i \in [t], we connect every vertex u \in Uj with every vertex in Zi via an
Ei-edge. Thus after this step, every vertex in Uj is adjacent to every vertex in V .

Note that the Ei-degree of every vertex in Uj is | Zi| =Ai,j . Moreover, we connect
u with a vertex v \in V only when the Ei-degree of v is supposed to be \infty ---since
Zi \subseteq 

\bigcup 
h\in inf(Bi,\ast )

Vh. Thus, the resulting graph is A| B-biregular. By repeating the
above process for every j \in [m], we obtain a complete A| B-biregular graph.

D.2.2. The formula for the case with infinitely many vertices on the left
and finitely many vertices on the right. In this subsection we will define the
formula that captures precisely the sizes of all possible A| B-biregular graphs where
the left-hand side has infinitely many vertices and the right-hand side has only finitely
many vertices. Here we do not require the degree matrices to be simple matrices---as
defined in Definition 5.1.

In the following lemma, we fix degree matrices A\in \BbbN t\times m
\infty ,+p and B \in \BbbN t\times n

\infty ,+p.

Lemma D.11. Suppose G = (U,V,E1, . . . ,Et) is a complete A| B-biregular graph
with witness partition U1 \uplus \cdot \cdot \cdot \uplus Um and V1 \uplus \cdot \cdot \cdot \uplus Vn. Suppose U is infinite and V is
finite. Let R= \{ i \in [t] | | Ei| =\infty \} and let J = \{ j \in [m] | | Uj | =\infty \} . Then we have the
following:

(1) For every color i /\in R for every j \in J , Ai,j is 0 or 0+p.
(2) For every j \in [n], there is i\in R with Bi,j =\infty .
(3) For every i\in R, the row Bi,\ast contains an \infty entry.
(4) For every j \in J for every i /\in R, all but finitely many vertices in Uj have zero

Ei-degree.
(5) There are only finitely many vertices in U for which there is a v \in V adjacent

to the vertex by an Ei-edge and the Ei-degree of v is finite.

Proof. To prove (1), let j \in J , i.e., the set Uj is infinite. If there were i /\in R such
that Ai,j \not = 0 or \not = 0+p, the number of edges in Ei is infinite, which contradicts the
assumption that i /\in R.

For (2), let j \in [n]. Since G is a complete A| B-biregular graph, the total degree
of each vertex v \in Vj must equal | U | , i.e,\sum 

i\in [t]

(Ei-degree of v) =
\sum 
i\in R

(Ei-degree of v) +
\sum 
i/\in R

(Ei-degree of v) = | U | .
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TWO VARIABLE LOGIC WITH U.P. COUNTING 963

By the definition of R, the sum
\sum 

i/\in R(Ei-degree of v) is finite. Since U is infinite,
the sum

\sum 
i\in R(Ei-degree of v) must be infinite. Therefore, there is i \in R such that

Bi,j =\infty .
For (3), let i \in R. The cardinality Ei is | Ei| =

\sum 
v\in V (Ei-degree of v). Since

i \in R, the cardinality | Ei| = \infty . Thus, there is v \in V with Ei-degree \infty . Therefore,
row Bi,\ast must contain \infty .

For (4), let j \in J and i /\in R. There can only be finitely many vertices in Uj

with nonzero Ei-degree. Otherwise, | Ei| =\infty , which contradicts the assumption that
i /\in R.

For (5), let v \in V . Obviously there are only finitely many vertices in U that are
adjacent to v via some Ei-edge, where the Ei-degree of v is finite. Since V is finite,
(5) follows immediately.

Intuitively, (1)--(3) state the properties matrices A and B should have when con-
sidering A| B-biregular graphs for the case considered in this subsection, which also
allows us to identify a subgraph whose biregularity can be characterized using subsec-
tion D.2.1. See Figure 13 for an illustration of the decomposition of matrices A and
B. We will use (4) and (5) to identify a corresponding subgraph whose biregularity
is characterized using the finite case covered in Theorem 7.6. For an arbitrary graph,
we let R and J be as defined in Lemma D.11.

Let C be the matrix obtained by replacing every \infty entry in B with 0+1. Intu-
itively, we replace \infty with some finite value.11 Let A3 be the matrix obtained from A

\underbrace{}  \underbrace{}  
\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}\mathrm{s} \mathrm{i}\mathrm{n} J

\right\}   rows not in R

\right\}   rows in R

A :=

\left(        
A1 0 or 0+p

A2 A3

\right)        

\underbrace{}  \underbrace{}  
\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y} \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{s} \infty \mathrm{i}\mathrm{n} \mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e} \mathrm{r}\mathrm{o}\mathrm{w} \mathrm{i}\mathrm{n} R

\right\}   rows not in R

\right\}   rows in R

B :=

\left(        
B1

B2

\right)        

Fig. 13. An illustration of the matrices A and B for the case when there is a complete A| B-
biregular graph G = (U,V,E1, . . . ,Et) with infinitely many vertices on the left-hand side and only
finitely many vertices on the right-hand side. Suppose U =U1 \uplus \cdot \cdot \cdot \uplus Un and V = V1 \uplus \cdot \cdot \cdot \uplus Vn is the
witness partition. R is the set of color i, where | Ei| = \infty and J is the set of column j where Uj is
infinite.

11Technically we cannot simply replace \infty with 0+1 since we insist that every periodic entry in
a degree matrix has period p. Instead we can replace it with 0+p,1+p, . . . , (p - 1)+p by repeating the

columns. For example, a column (\infty a ) becomes ( 0
+p

a
), ( 1

+p

a
), . . . , ( (p - 1)+p

a
). We allow the matrix to

have 0+1 entries.
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964 MICHAEL BENEDIKT, EGOR KOSTYLEV, AND TONY TAN

by keeping only the rows in R and the columns in J . Let B2 be the matrix obtained
from B by keeping only the rows in R and D be the matrix obtained from B2 by
replacing every non-\infty entry with 0.

Let U\ast be the set of vertices in
\bigcup 

j\in J Uj adjacent to some v \in V via some Ei-edges,
where the Ei-degree of v is finite. For each j \in J , let Uj,fin be the set of vertices in
Uj with nonzero Ei-degree for some i /\in R. Define the sets

Ufin := U\ast \cup 
\bigcup 
j /\in J

Uj \cup 
\bigcup 
j\in J

Uj,fin,

U\infty := U  - Ufin.

By (4) in Lemma D.11, the set Uj,fin is finite for every j \in J . By (5), the set U\ast 

is finite. Thus, the set Ufin is finite. By the definition of U\infty , a vertex in U\infty has
nonzero Ei-degree only when i\in R. See Figure 14 for an illustration.

The following lemma will provide our reduction.

Lemma D.12. Suppose G= ((U,V,E1, . . . ,Et) is a complete A| B-biregular graph
with size \=M | \=N . Let Ufin and U\infty be as defined above, Gfin denote the induced subgraph
G[Ufin \cup V ], and G\infty denote the induced subgraph G[U\infty \cup V ]. Then

\bullet Gfin is a (finite) complete A| C-biregular graph with size \=K| \=N for some \=K =
(K1, . . . ,Km), where Kj =Mj if j /\in J , and Kj is some finite value if j \in J ;

\bullet G\infty is a complete A3| D-biregular graph with size (\infty , . . . ,\infty )| \=N .

Proof. For each vertex w \in U \cup V , for each color i\in [t], we say that the Ei-degree
of w is affected in Gfin (resp., G\infty ), if its Ei-degree in Gfin (resp., G\infty ) is different
from its Ei-degree in G. Otherwise, we say that the Ei-degree of w is unaffected in
Gfin (resp., G\infty ).

Towards proving the first bullet item, note that for each i \in [t], the Ei-degree of
every vertex u is unaffected in Gfin, since V is still the set of vertices on the left-hand
side of Gfin. On the other hand, for each vertex v \in V , and color i \in [t], if the Ei-
degree of v is finite in G, then its Ei-degree is unaffected in Gfin. This is because
if (u, v) \in Ei and the Ei-degree of v is finite, then by definition, u \in U\ast and, hence,
u\in Ufin. So, the Ei-degree of v is affected in Gfin only when the Ei-degree of v is \infty 

\bigcup 
j /\in J Uj

finite

U\ast \cup 
\bigcup 

j\in J Uj,fi\mathrm{n}

U\infty 

finite

\infty 

V

finite

Fig. 14. Illustration of the set
\bigcup 

j /\in J Uj , U\ast \cup 
\bigcup 

j\in J Uj,fin, and U\infty with their sizes. The set

Ufin is the union U\ast \cup 
\bigcup 

j\in J Uj,fin\cup 
\bigcup 

j /\in J Uj , which is finite. In the induced graph Gfin =G[Ufin\cup V ],

the vertices in V have finite total degrees. In the induced graph G\infty = G[U\infty \cup V ], there are no
Ei-edges for i /\in R. Note: color appears only in the online article.
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TWO VARIABLE LOGIC WITH U.P. COUNTING 965

in G, which has now become finite in Gfin. Since every \infty entry in B has now becomes
0+1 in C, it follows immediately that Gfin is a complete A| C-biregular graph.

Turning to the second bullet item, the Ei-degree of every vertex in U\infty is obviously
unaffected in G\infty . Moreover, every vertex in U\infty has nonzero Ei-degree in G only
when i\in R. Thus, the colors of the edges in G\infty are only those in R. For every vertex
v \in V ,

\bullet if its Ei-degree is \infty in G, its Ei-degree is unaffected in G\infty ;
\bullet if its Ei-degree is finite in G, its Ei-degree becomes 0 in G\infty .

This is because if u and v are adjacent via an Ei-edge and the Ei-degree of
v is finite, then u\in U\ast , hence, u\in Ufin.

Since every finite entry in B2 becomes 0 in D, it follows immediately that G\infty is
A3| D-biregular.

Lemma D.12 reduces characterization of the sizes of A| B-biregular graphs to
characterizations of finite complete biregular graphs (which we have provided in the
body) and characterization of infinite A3| D-biregular graphs, whose sizes are of the
form (\infty , . . . ,\infty )| \=N , i.e., the components in the size vectors on the left are all \infty and
every entry in D is either 0 or \infty .

We will next define formulas that capture the sizes \=M | \=N of complete A| B-
biregular graphs, assuming that the left-hand side has infinitely many vertices and
the right-hand side has finitely many vertices. Let R be the set of colors i where the
number of Ei-edges is infinite. and J \subseteq [m] be the set of indexes j, where Mj =\infty .

Let \=x= (x1, . . . , xm), \=y = (y1, . . . , yn), and \=z = (z1, . . . , zm). Let \xi J,RA| B(\=x, \=y) be the
formula

\| \=xT \| =\infty \wedge \| \=yT \| \not =\infty (D.6)

\wedge 
\bigwedge 
i\in R

\| \=xT \| nz(Ai,\ast ) =\infty \wedge 
\bigwedge 
i/\in R

\| \=xT \| nz(Ai,\ast ) \not =\infty (D.7)

\wedge 
\bigwedge 
j\in J

xj =\infty \wedge 
\bigwedge 
j /\in J

xj \not =\infty \wedge (D.8)

\wedge \exists \=z \sansc -\sansb \sansi \sansr \sanse \sansg A| C(\=z, \=y) \wedge \| \=zT \| \not =\infty \wedge 
\bigwedge 
j /\in J

zi = xi(D.9)

\wedge \xi A3| D(\=y),(D.10)

where formula \sansc -\sansb \sansi \sansr \sanse \sansg A| C(\=z, \=y) captures the sizes of the finite complete A| C-biregular
graph as defined in Theorem 7.6 and \xi A3| D(\=y) is as defined in (D.5).

Intuitively, (D.6)--(D.8) state that there are infinitely many vertices on the left
and only finitely many on the right, and that R and J are as defined above. The next
lemma follows immediately from Lemma D.8, Theorem 7.6, and Lemma D.12.

Lemma D.13. For every pair of matrices A, B and every pair of size vectors
\=M , \=N with infinitely many vertices on the left, finitely many on the right, R and
J defined as above, the formula \xi J,RA| B(

\=M, \=N) holds in \scrN \infty if and only if there is a

complete A| B-biregular graph of size \=M | \=N .

To wrap up this subsection, we define the formula:

\sansc -\sansb \sansi \sansr \sanse \sansg \infty ,fin
A| B (\=x, \=y) :=

\bigvee 
J\subseteq [m],R\subseteq [t]

\xi J,RA| B(\=x, \=y)

that captures the sizes of all possible A| B-biregular graphs where the left-hand side
has infinitely many vertices and the right-hand side has finitely many vertices.
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Remark D.14. By Lemma 8.1 for finite graphs, \sansc -\sansb \sansi \sansr \sanse \sansg A| C(\=z, \=y) is a disjunction of
conjunctions of O(mnt4\delta (A,B)4) (in)equations. By definition, \xi A3| D(\=y) is a disjunc-

tion of conjunctions of O(tmn) (in)equations. Thus, \sansc -\sansb \sansi \sansr \sanse \sansg \infty ,fin
A| B (\=x, \=y) is a disjunction

of conjunctions of O(mnt4\delta (A,B)4) (in)equations.
For arbitrary degree matrices A and B, we can define a formula \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y)

capturing the sizes of all possible A| B-biregular graphs as a disjunction of the formulas
for each of the following four cases:

\bullet Both sides have finitely many vertices, which by Lemma 8.1 is a disjunction
of conjunctions of O(mnt4\delta (A,B)4) (in)equations.

\bullet The left-hand side has infinitely many vertices and the right-hand side has
finitely many vertices, which as explained above is a disjunction of conjunc-
tions of O(mnt4\delta (A,B)4) (in)equations.

\bullet The left-hand side has finitely many vertices and the right-hand side has
infinitely many vertices, which is symmetric to the previous case.

\bullet Both sides have infinitely many vertices.
By Remark D.5, the formula when the degree matrices are simple matrices is a
disjunction of conjunctions of O(2tt4\delta (A,B)) (in)equations. Since the trans-
formation from nonsimple to simple requires a blowup of the O(mn) factor,
this case is a disjunction of conjunctions of O(mn2tt4\delta (A,B)4) (in)equations.

We conclude that \sansc -\sansb \sansi \sansr \sanse \sansg A| B(\=x, \=y) can be expressed as a disjunction of conjunctions
of O(mn2tt4\delta (A,B)4) (in)equations.

Appendix E. The extension of section 7 to the general case. In this ap-
pendix we explain briefly how to extend the reduction from nonsimple degree matrices
to simple degree matrices in section 7, now allowing the degree matrices to contain
\infty entries and the sizes of the partitions to be infinite. This reduction is only applied
to the finite case and case 1 from the prior appendix, where there are infinite degree
vertices on both sides. In the case where exactly one side had an infinite degree ver-
tex, we did not make use of the simple restriction. The reduction we give below can
actually apply to all cases, but making use of it in the last case above would not give
the desired complexity.

We need to modify the definition of behavior functions in Definition 7.4 a little
bit, to take into account that the entry in a degree matrix can be \infty .

Definition E.1. For each j \in [m], we define a behavior function of column j
in A to be a function g : [t] \times [n] \rightarrow \{ 0,1, . . . , q,0+p,1+p, . . . , q+p,\infty \} such that the
following hold:

\bullet A\ast ,j =

\left(     
g(1,1) + \cdot \cdot \cdot + g(1, n)
g(2,1) + \cdot \cdot \cdot + g(2, n)

...
g(t,1) + \cdot \cdot \cdot + g(t, n)

\right)     ;

\bullet for each color i \in [t], if Ai,j is a fixed entry, then g(i,1), . . . , g(i, n) are all
fixed entries;

\bullet for each color i\in [t], if Ai,j is a periodic entry, then g(i,1), . . . , g(i, n) are all
periodic entries;

\bullet for each color i \in [t], if Ai,j is an \infty entry, then g(i,1), . . . , g(i, n) are all
periodic entries and at least one of them is \infty .

Note that the difference between Definition 7.4 and Definition E.1 is the addition
of the third item, where the entry Ai,j can be \infty . The definition of a behavior function
of column j\prime in B is also modified in a similar manner. The reduction from nonsimple
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matrices to simple matrices can now be obtained in exactly the same manner as in
subsection 7.2.
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