
Fine-Grained Complexity Analysis of Dependency Quantified Boolean
Formulas
CHE CHENG, National Taiwan University, Taiwan
LONG-HIN FUNG, National Taiwan University, Taiwan
JIE-HONG ROLAND JIANG, National Taiwan University, Taiwan
FRIEDRICH SLIVOVSKY, University of Liverpool, UK
TONY TAN, University of Liverpool, UK

Dependency Quantified Boolean Formulas (DQBF) extend Quantified Boolean Formulas by allowing each existential variable
to depend on an explicitly specified subset of the universal variables. The satisfiability problem for DQBF is NEXP-complete
in general, with only a few tractable fragments known to date. We investigate the complexity of DQBF with 𝑘 existential
variables (𝑘-DQBF) under structural restrictions on the matrix – specifically, when it is in Conjunctive Normal Form (CNF) or
Disjunctive Normal Form (DNF) – as well as under constraints on the dependency sets. For DNF matrices, we obtain a clear
classification: 2-DQBF is PSPACE-complete, while 3-DQBF is NEXP-hard, even with disjoint dependencies. For CNF matrices,
the picture is more nuanced: we show that the complexity of 𝑘-DQBF ranges from NL-complete for 2-DQBF with disjoint
dependencies to NEXP-complete for 6-DQBF with arbitrary dependencies.
JAIR Associate Editor: Insert JAIR AE Name
JAIR Reference Format:
Che Cheng, Long-Hin Fung, Jie-Hong Roland Jiang, Friedrich Slivovsky, and Tony Tan. 2025. Fine-Grained Complexity
Analysis of Dependency Quantified Boolean Formulas. Journal of Artificial Intelligence Research 4, Article 6 (August 2025),
20 pages. doi: 10.1613/jair.1.xxxxx

1 Introduction
Propositional satisfiability (SAT) solving has made significant progress over the past 30 years (Biere, Fleury,
et al. 2023; Fichte et al. 2023). Thanks to clever algorithms and highly optimised solvers, SAT has become a
powerful tool for solving hard combinatorial problems in many areas, including verification, planning, and
artificial intelligence (Biere, Heule, et al. 2009). Modern solvers can handle very large formulas efficiently, making
SAT a practical choice in many settings.
However, for problems beyond NP, such as variants of reactive synthesis, direct encodings in propositional

logic often grow exponentially with the input and quickly become too large to fit in memory. This has led
to growing interest in more expressive logics, such as Quantified Boolean Formulas (QBF) and Dependency
Quantified Boolean Formulas (DQBF) (Peterson et al. 2001). DQBF extends QBF by allowing explicit control over
the dependency sets: each existential variable can be assigned its own set of universal variables it depends on. A
Authors’ Contact Information: Che Cheng, orcid: 0009-0009-9126-3239, Graduate Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan, f11943097@ntu.edu.tw; Long-Hin Fung, orcid: 0009-0004-0972-9188, Department of Computer Science and
Information Engineering, National Taiwan University, Taipei, Taiwan, r12922017@csie.ntu.edu.tw; Jie-Hong Roland Jiang, orcid: 0000-0002-
2279-4732, Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan,
jhjiang@ntu.edu.tw; Friedrich Slivovsky, orcid: 0000-0003-1784-2346, School of Computer Science and Informatics, University of Liverpool,
Liverpool, UK, F.Slivovsky@liverpool.ac.uk; Tony Tan, orcid: 0009-0005-8341-2004, School of Computer Science and Informatics, University
of Liverpool, Liverpool, UK, Tony.Tan@liverpool.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
doi: 10.1613/jair.1.xxxxx

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

https://doi.org/10.1613/jair.1.xxxxx
https://orcid.org/0009-0009-9126-3239
https://orcid.org/0009-0004-0972-9188
https://orcid.org/0000-0002-2279-4732
https://orcid.org/0000-0002-2279-4732
https://orcid.org/0000-0003-1784-2346
https://orcid.org/0009-0005-8341-2004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1613/jair.1.xxxxx

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

6:2 • Cheng, Fung, Jiang, Slivovsky & Tan

model of a DQBF assigns to each existential variable a Skolem function that maps assignments of its dependency
set to truth values. From a game-theoretic point of view, a DQBF model is a collection of sets of local strategies —
one set for each existential variable — that may observe only part of the universal assignment. This makes DQBF
more succinct than QBF and particularly well-suited for applications such as synthesis and verification, where
components often make decisions based on partial information. Unfortunately, this added expressiveness comes
at a cost: DQBF satisfiability is NEXP-complete, and only a few tractable fragments are known (Bubeck 2010;
Bubeck and Büning 2006, 2010; Ganian et al. 2020; Scholl et al. 2019). One notable tractable case involves CNF
matrices with dependency sets that are either pairwise disjoint or identical; such formulas can be rewritten into
satisfiability-equivalent Σ3-QBFs (Scholl et al. 2019).

Building on these ideas, we apply similar restrictions on the dependency sets to refine a recent classification of
the complexity of DQBF with 𝑘 existential variables, henceforth, denoted by 𝑘-DQBF (Fung and Tan 2023). For
DNF matrices, this restriction has no effect, since the proofs by Fung and Tan (2023) for the PSPACE-hardness of
2-DQBF and NEXP-hardness of 3-DQBF can be carried over to formulas with pairwise disjoint dependency sets.

For CNF matrices, the situation is more subtle. For 𝑘 ⩾ 3 and even non-constant 𝑘 with disjoint dependencies,
we extend the strategy of Scholl et al. (2019) to split clauses containing variables with incomparable dependency
sets, but instead of reducing it to a QBF, we directly construct an NP algorithm to establish the NP membership.
This technique can be extended to the case where any two dependency sets are either disjoint or comparable,
and the size blow-up remains polynomial for constant 𝑘 . The resulting DQBF only has existential variables with
empty dependency sets, and its satisfiability can be checked in NP.

When arbitrary dependencies are allowed in CNF matrices, we prove that 3-DQBF is ΠP
2 -hard. Further, a variant

of Tseitin transformation lets us convert a 𝑘-DQBF with an arbitrary matrix into a (𝑘 + 3)-DQBF with CNF matrix,
yielding PSPACE-hardness of 5-DQBF and NEXP-hardness of 6-DQBF with CNF matrices.
As for the satisfiability problem of 2-DQBF, Fung, Cheng, et al. (2024) shows that it reduces to detecting

contradicting cycles in a succinctly represented implication graph, making it PSPACE-complete. For CNF matrices
and disjoint dependencies, we show that the fully expanded graph has a simple structure, allowing satisfiability
tests in NL. Consequently, the satisfiability of 2-DQBF with CNF matrices and unrestricted dependencies is in
coNP — one can guess an assignment to the shared universal variables and solve the resulting instance with
disjoint dependencies in NL. We also prove the NL- and coNP-hardness of the two problems via a reduction from
2-SAT and 3-DNF tautology, respectively.

Our results, summarised in Table 1, help map out the complexity of natural fragments of DQBF and show how
both the formula structure and dependency restrictions play a key role in determining tractability.

2 Preliminaries
In this section, we define the notation used throughout this paper and recall the necessary technical background.
All logarithms have base 2. For a positive integer𝑚, [𝑚] denotes the set of integers {1, . . . ,𝑚}.

Boolean values True and False are denoted by ⊤ and ⊥, respectively. Boolean connectives ∧, ∨, ¬,→,↔, and
⊕ are interpreted as usual. A literal ℓ is a Boolean variable 𝑣 or its negation ¬𝑣 . We write var(𝑣) = var(¬𝑣) = 𝑣
for the variable of a literal and sgn(𝑣) = ⊤ and sgn(¬𝑣) = ⊥ to denote its sign. We also write 𝑣 ⊕ ⊥ and 𝑣 ⊕ ⊤ to
denote the literals 𝑣 and ¬𝑣 , respectively.
A clause is a disjunction of literals, and a cube is a conjunction of literals. For a clause/cube 𝐶 , we write

vars(𝐶) = {var(ℓ) | ℓ ∈ 𝐶} for the set of variables appearing in 𝐶 . A Boolean formula 𝜑 is in conjunctive normal
form (CNF) if it is a conjunction of clauses and in disjunctive normal form (DNF) if it is a disjunction of cubes. We
view a clause or a cube as a set of literals and a formula in CNF (respectively, DNF) as a set of clauses (respectively,
cubes) whenever appropriate. We sometimes write a clause in the form of 𝑄 → 𝐶 , where 𝑄 is a cube and 𝐶 is a
clause; and a DNF formula in the form of 𝜑 → 𝜓 , where 𝜑 is in CNF and𝜓 is in DNF.

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:3

Table 1. Summary of the complexity results.

𝑘 𝑘-DQBFdcnf 𝑘-DQBFdecnf
𝑘-DQBFdeccnf ,
𝑘-DQBFdscnf

𝑘-DQBFcnf 𝑘-DQBFddnf

1 - - - L
(Theorem 6.1)

coNP-c
(Theorem 3.1)

2 NL-c
(Theorem 5.3)

NL-c
(Corollary 5.12)

NL-c
(Corollary 5.12)

coNP-c
(Theorem 6.2)

PSPACE-c
(Theorem 3.1)

3

NP-c
(Theorem 5.9)

NP-c
(Corollary 5.12)

NP-c
(Corollary 5.12)

ΠP
2 -h

(Theorem 6.3)

NEXP-c
(Theorem 3.1)

4 ΠP
4 -h

(Theorem 6.5)

5 PSPACE-h
(Theorem 6.6)

6+ NEXP-c
(Theorem 6.6)

Non-const. ΣP
3 -c

(Scholl et al. 2019)
NEXP-c

(Scholl et al. 2019)

Note: “-c” denotes “-complete”, “-h” denotes “-hard”, and “non-const.” denotes “non-constant.”

We say that two sets of clauses 𝐴 and 𝐵 are variable-disjoint if for any clause 𝐶1 ∈ 𝐴 and 𝐶2 ∈ 𝐵, vars(𝐶1) ∩
vars(𝐶2) = ∅. For variable-disjoint sets 𝐴 and 𝐵, we write 𝐴 × 𝐵 to denote the set of clauses {(𝐶1 ∨ 𝐶2) |
𝐶1 ∈ 𝐴,𝐶2 ∈ 𝐵}. We generalise this notion to 𝐴1 ×𝐴2 × · · · ×𝐴𝑛 for pairwise variable-disjoint sets 𝐴1, . . . , 𝐴𝑛 .

We write 𝑣 = (𝑣1, . . . , 𝑣𝑛) to denote a vector of 𝑛 Boolean variables with |𝑣 | B 𝑛 denoting its length.1
An assignment on 𝑣 is a function from 𝑣 to {⊤,⊥}. We often identify an assignment on 𝑣 with a vector 𝑎 =

(𝑎1, . . . , 𝑎𝑛) ∈ {⊤,⊥}𝑛 , denoted 𝑎𝑣 , which maps each 𝑣𝑖 to 𝑎𝑖 . When 𝑣 ⊆ 𝑢, we write 𝑎𝑢 (𝑣) to denote the vector of
Boolean values (𝑎𝑢 (𝑣))𝑣∈𝑣 . When 𝑣 is clear from the context, we will simply write 𝑎 instead of 𝑎𝑣 .
Two assignments 𝑎𝑢 and 𝑏𝑣 are consistent, denoted by 𝑎𝑢 ≃ 𝑏𝑣 , if 𝑎𝑢 (𝑣) = 𝑏𝑣 (𝑣) for every 𝑣 ∈ 𝑢 ∩ 𝑣 . When 𝑎𝑢

and 𝑏𝑣 are consistent, we write (𝑎𝑢, 𝑏𝑣) to denote the union 𝑎𝑢 ∪𝑏𝑣 . Given a Boolean formula 𝜑 over the variables
𝑢, 𝑣 and an assignment 𝑎𝑣 , we denote by 𝜑 [𝑎𝑣] the induced formula over the variables 𝑢 obtained by assigning
the variables in 𝑣 with Boolean values according to the assignment 𝑎𝑣 .

For a positive integer𝑚 and a vector of variables 𝑢 of length 𝑛 > log𝑚, by abuse of notation, we write 𝑢 =𝑚

to denote the cube
∧

𝑖∈[𝑛] 𝑢𝑖 ↔ 𝑎𝑖 , where (𝑎1, . . . , 𝑎𝑛) is the 𝑛-bit binary representation of𝑚.

2.1 DQBF and Its Subclasses
We consider Dependency Quantified Boolean Formulas (DQBF) of the form

Φ = ∀𝑥, ∃𝑦1 (𝐷1), . . . , 𝑦𝑘 (𝐷𝑘). 𝜑 , (1)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝐷𝑖 ⊆ 𝑥 is the dependency set of the existential variable 𝑦𝑖 for every 𝑖 ∈ [𝑘], and 𝜑 is a
quantifier-free Boolean formula over the variables 𝑥 ∪ 𝑦 called the matrix of Φ.
1To avoid clutter, we always assume a vector of variables 𝑣 = (𝑣1, . . . , 𝑣𝑛) does not contain duplicate entries, which can be viewed as a set
{𝑣1, . . . , 𝑣𝑛 }. We will thus use set-theoretic operations on such vectors as on sets.

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

6:4 • Cheng, Fung, Jiang, Slivovsky & Tan

We write dep(𝑣) B 𝐷𝑖 if 𝑣 = 𝑦𝑖 and dep(𝑣) B {𝑥𝑖 } if 𝑣 = 𝑥𝑖 . We extend this notation to literals and clauses by
letting dep(ℓ) B dep(var(ℓ)) for a literal ℓ and dep(𝐶) B ⋃

ℓ∈𝐶 dep(ℓ) for a clause 𝐶 .
We say that Φ is satisfiable if for every 𝑖 ∈ [𝑘] there is a Boolean formula 𝑓𝑖 using only variables in 𝐷𝑖 such

that by replacing each 𝑦𝑖 with 𝑓𝑖 , the formula 𝜑 becomes a tautology. In this case, we call the sequence 𝑓1, . . . , 𝑓𝑘 a
model of Φ and refer to each individual 𝑓𝑖 as a Skolem function for 𝑦𝑖 .
We define the subclasses 𝑘-DQBF𝛼

𝛽
of DQBF, where 𝑘 ⩾ 1 indicates the number of existential variables,

𝛼 ∈ {d, de, dec, ds} indicates the condition on the dependency sets, and 𝛽 ∈ {cnf, dnf} indicates the form of the
matrix.
For the dependency set annotation 𝛼 , we define:
DQBFd For every 𝑖 ≠ 𝑗 , 𝐷𝑖 ∩ 𝐷 𝑗 = ∅,
DQBFde For every 𝑖 ≠ 𝑗 , 𝐷𝑖 ∩ 𝐷 𝑗 = ∅ or 𝐷𝑖 = 𝐷 𝑗 ,
DQBFdec For every 𝑖 ≠ 𝑗 with |𝐷𝑖 | ⩽ |𝐷 𝑗 |, 𝐷𝑖 ∩ 𝐷 𝑗 = ∅, 𝐷𝑖 = 𝐷 𝑗 , or 𝐷 𝑗 = 𝑥 , and
DQBFds For every 𝑖 ≠ 𝑗 with |𝐷𝑖 | ⩽ |𝐷 𝑗 |, 𝐷𝑖 ∩ 𝐷 𝑗 = ∅ or 𝐷𝑖 ⊆ 𝐷 𝑗 .

The letters d, e, c, and s denote disjoint, equal, complete, and subset, respectively. Note that the dependency sets of
a DQBFds formula form a laminar set family. The classification of different dependency structures is inspired
by Scholl et al. (2019), but we specify the condition that the formula is in CNF explicitly in our notation. That
is, DQBFde and DQBFdec defined by Scholl et al. (2019) correspond to DQBFdecnf and DQBFdeccnf in our notation,
respectively.

Note that DQBFd ⊆ DQBFde ⊆ DQBFdec ⊆ DQBFds. The first two inclusions are trivial, and the last one comes
from the observation that both 𝐷𝑖 = 𝐷 𝑗 and 𝐷 𝑗 = 𝑥 are special cases of 𝐷𝑖 ⊆ 𝐷 𝑗 .
When 𝑘 , 𝛼 , or 𝛽 is missing, it means that the corresponding restriction is dropped. For instance, 3-DQBFdnf

denotes the class of DQBF with 3 existential variables, arbitrary dependency structure, and matrix in DNF, while
DQBFd denotes the class of DQBF with the dependency structure specified by d and an arbitrary Boolean formula
as the matrix. We denote by sat(𝑘-DQBF𝛼

𝛽
) the satisfiability problem for the class 𝑘-DQBF𝛼

𝛽
.

Remark 2.1. For every 𝛼 ∈ {d, de, dec, ds} and 𝛽 ∈ {cnf, dnf}, checking whether a DQBF formula Φ is in the
class DQBF𝛼

𝛽
can be done deterministically in space logarithmic in the length of Φ. To do so, we iterate through

all the variables to check whether it satisfies the conditions set by 𝛼 . In each iteration, it suffices to store 𝑂 (1)
number of indices of the variables, and each index requires only logarithmic space.

2.2 Tseitin Transformation
Tseitin transformation is a standard technique to turn an arbitrary Boolean satisfiability problem into an equi-
satisfiable one in 3-CNF form (Tseitin 1968). It can be directly lifted to QBF and DQBF by allowing the Tseitin
variables to depend on every universal variable. We recall the DQBF version here.

Given a DQBF
Φ = ∀𝑥, ∃𝑦1 (𝑧1), . . . , ∃𝑦𝑘 (𝑧𝑘). 𝜑 ,

where 𝜑 is a circuit with gates 𝑔1, . . . , 𝑔𝑚 , we assume, without loss of generality, that

𝑔𝑖 =


𝑥𝑖 for every 1 ⩽ 𝑖 ⩽ 𝑛
𝑦𝑖−𝑛 for every 𝑛 + 1 ⩽ 𝑖 ⩽ 𝑛 + 𝑘
𝑓𝑖 (𝑔𝑙𝑖 , 𝑔𝑟𝑖) for every 𝑛 + 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑚,

where 𝑙𝑖 , 𝑟𝑖 ∈ [𝑖 − 1] are the indices of the two fanins of the gate 𝑔𝑖 implementing the Boolean function 𝑓𝑖 .
The core idea of Tseitin transformation is that we introduce a fresh variable 𝑡𝑖 for every gate 𝑔𝑖 and encode

locally the relation between the inputs and the output of the gate. The formula𝜓𝐺 encoding these constraints is a
CNF formula encoding

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:5

• 𝑡𝑖 ↔ 𝑥𝑖 for every 1 ⩽ 𝑖 ⩽ 𝑛,
• 𝑡𝑖 ↔ 𝑦𝑖−𝑛 for every 𝑛 + 1 ⩽ 𝑖 ⩽ 𝑛 + 𝑘 , and
• 𝑡𝑖 ↔ 𝑓𝑖 (𝑡𝑙𝑖 , 𝑡𝑟𝑖) for every 𝑛 + 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑚.

We then have Φ is equisatisfiable to the DQBFcnf
Ψ1 B ∀𝑥, ∃𝑦1 (𝑧1), . . . , ∃𝑦𝑘 (𝑧𝑘), ∃𝑡 (𝑥).𝜓𝐺 ∧ 𝑡𝑚

with matrix in 3-CNF.
To transform it to DNF form, as noted in (Chen et al. 2022), Φ is equisatisfiable to

Ψ2 B ∀𝑥,∀𝑡, ∃𝑦1 (𝑧1), . . . , ∃𝑦𝑘 (𝑧𝑘).𝜓𝐺 → 𝑡𝑚 .

Note that the matrix of the formula is in DNF form. In the context of QBF, it can be thought of as applying the
Tseitin transformation on ¬𝜑 and then negating the resulting existential formula (Zhang 2006). We refer to this
as the DNF version of Tseitin transformation.

2.3 Manipulation of DQBFcnf
We recall two operations for manipulating DQBFcnf formulas, namely universal reduction (Balabanov, Chiang,
et al. 2014; Fröhlich et al. 2014) and resolution-based variable elimination (Wimmer et al. 2015).

Lemma 2.2 (Universal reduction (Balabanov, Chiang, et al. 2014; Fröhlich et al. 2014)). Let Φ =

∀𝑥, ∃𝑦1 (𝐷1), . . . , ∃𝑦𝑘 (𝐷𝑘). 𝜑 be a DQBFcnf formula, 𝐶 ∈ 𝜑 be a clause, ℓ ∈ 𝐶 be a universal literal, and let
𝐶′ B 𝐶 \ {ℓ}. If ℓ ∉ dep(𝐶′), then Φ is equisatisfiable to

Φ′ B ∀𝑥, ∃𝑦1 (𝐷1), . . . , ∃𝑦𝑘 (𝐷𝑘). 𝜑 ∪ {𝐶′} \ {𝐶} .

Using universal reduction, we assume that
⋃

𝑖∈[𝑘] 𝐷𝑖 = 𝑥 for every DQBFcnf formula, since any universal
variable not in

⋃
𝑖∈[𝑘] 𝐷𝑖 can be universally-reduced from every clause.

For variable elimination by resolution, we only need a weaker version, which is sufficient for our purpose.

Lemma 2.3 (Variable elimination by resolution (Wimmer et al. 2015)). LetΦ = ∀𝑥, ∃𝑦1 (𝐷1), . . . , ∃𝑦𝑘 (𝐷𝑘). 𝜑
be a DQBFcnf formula. We partition 𝜑 into three sets:

• 𝜑𝑦1 B {𝐶 ∈ 𝜑 |𝑦1 ∈ 𝐶},
• 𝜑¬𝑦1 B {𝐶 ∈ 𝜑 | ¬𝑦1 ∈ 𝐶}, and
• 𝜑 ∅ B 𝜑 \ (𝜑𝑦1 ∪ 𝜑¬𝑦1).

If for every 𝐶 ∈ 𝜑𝑦1 we have dep(𝐶) ⊆ dep(𝑦1), or for every 𝐶 ∈ 𝜑¬𝑦1 we have dep(𝐶) ⊆ dep(𝑦1), then Φ is
equisatisfiable to

∀𝑥, ∃𝑦2 (𝐷2), . . . , ∃𝑦𝑘 (𝐷𝑘). 𝜑 ∅ ∪ {𝐶 ⊗𝑦1 𝐶
′ |𝐶 ∈ 𝜑𝑦1 ,𝐶′ ∈ 𝜑¬𝑦1 } ,

where 𝐶 ⊗𝑣 𝐶
′ denotes the resolution of 𝐶 and 𝐶′ w.r.t. the pivot 𝑣 , i.e., 𝐶 ⊗𝑣 𝐶

′ = (𝐶 \ {𝑣}) ∪ (𝐶′ \ {¬𝑣}).

The intuition is that 𝑦1 can “see” every assignment that may force it to be assigned to ⊤ (respectively, ⊥),
and thus if all resolvents are satisfied, then there must be a Skolem function for 𝑦1 that satisfies the clauses in
𝜑𝑦1 ∪ 𝜑¬𝑦1 . Note that the number of clauses after removing 𝑦1 is at most |𝜑 |2.

2.4 Universal Expansion of 𝑘-DQBF
Consider a 𝑘-DQBF formula Φ B ∀𝑥, ∃𝑦1 (𝐷1), . . . , ∃𝑦𝑘 (𝐷𝑘) . 𝜑 . Let 𝑦 = (𝑦1, . . . , 𝑦𝑘). Given an assignment 𝑎 on 𝑥
and 𝑏 on 𝑦, for every 𝑖 ∈ [𝑘], let 𝑎𝑖 be the restriction of 𝑎 to 𝐷𝑖 and 𝑏𝑖 be the restriction of 𝑏 to 𝑦𝑖 . We can expand

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

6:6 • Cheng, Fung, Jiang, Slivovsky & Tan

Φ into an equisatisfiable 𝑘-CNF formula exp(Φ) by instantiating each 𝑦𝑖 into exponentially many instantiated
variables of the form 𝑌𝑖,𝑎𝑖 (Balabanov and Jiang 2015; Bubeck 2010; Fröhlich et al. 2014). Formally,

exp(Φ) B
∧

(𝑎,𝑏) :𝜑 [𝑎,𝑏]=⊥

C𝑎,𝑏 ,

where C𝑎,𝑏 B
∨

𝑖∈[𝑘] 𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 . Intuitively, in the expansion exp(Φ), the Boolean variable 𝑌𝑖,𝑎𝑖 represents the
value of a candidate Skolem function 𝑓𝑖 (𝑎𝑖) for 𝑦𝑖 . The universal expansion shows that the satisfiability of Φ can
be reduced to a Boolean satisfiability problem (with exponential blow-up). Moreover, if the assignment (𝑎,𝑏)
falsifies the matrix 𝜑 , then a satisfying assignment of exp(Φ) must assign 𝑌𝑖,𝑎𝑖 to ¬𝑏𝑖 for some 𝑖 ∈ [𝑘].

3 Complexity of sat(𝑘-DQBFddnf)
Having defined various subclasses of DQBF, we will refine previous results by stating them more precisely. In
this section, we consider the case where the matrix is in DNF.
By combining the DNF version of Tseitin transformation (Chen et al. 2022, Proposition 1) and the results by

Fung and Tan (2023), we can show that restricting to DNF matrix and pairwise-disjoint dependency sets does not
affect the complexity of sat(𝑘-DQBF).
Theorem 3.1. sat(𝑘-DQBFddnf) is coNP-, PSPACE-, and NEXP-complete when 𝑘 = 1, 𝑘 = 2, and 𝑘 ⩾ 3, respec-

tively.

Proof. Since we are considering subclasses of 𝑘-DQBF, it suffices to show the hardness part.
First, observe that the DNF version of the Tseitin transformation (see Section 2.2) preserves both the number

of existential variables and the dependency structure. Therefore, we have that sat(𝑘-DQBF𝛼dnf) is as hard as
sat(𝑘-DQBF𝛼) for every combination of 𝛼 ∈ {d, de, dec, ds} and 𝑘 ⩾ 1. In addition, observe that the formula
constructed to show the PSPACE- and NEXP-hardness of sat(2-DQBF) and sat(3-DQBF) in (Fung and Tan 2023,
Theorems 4 and 5) are in fact 2-DQBFd and 3-DQBFd, respectively. Thus, we have sat(𝑘-DQBFddnf) is coNP-,
PSPACE-, and NEXP-complete for 𝑘 = 1, 𝑘 = 2, and 𝑘 ⩾ 3, respectively. □

Since 𝑘-DQBFddnf ⊆ 𝑘-DQBFdednf ⊆ 𝑘-DQBFdecdnf ⊆ 𝑘-DQBFdsdnf ⊆ 𝑘-DQBFdnf ⊆ 𝑘-DQBF, we have the following
corollary:
Corollary 3.2. sat(𝑘-DQBF𝛼dnf) and sat(𝑘-DQBFdnf) is coNP-, PSPACE-, and NEXP-complete when 𝑘 = 1,

𝑘 = 2, and 𝑘 ⩾ 3, respectively, for every 𝛼 ∈ {de, dec, ds}.

4 A Useful Lemma
In this section, we prove a lemma that will be useful for proving hardness results for several subclasses of DQBFcnf .
Lemma 4.1. Let 𝑙 ⩾ 0 be some constant, and Φ B ∀𝑧, ∃𝑥 (𝐷), ∃𝑦1 (𝐷1), . . . , ∃𝑦𝑘 (𝐷𝑘).

∧
𝑗∈[𝑚] (𝐶𝑥

𝑗 ∨ 𝐶−𝑥
𝑗) be a

(𝑛 + 𝑘)-DQBFcnf , where
• every variable in 𝑥 = (𝑥1, . . . , 𝑥𝑛) has the dependency set 𝐷 ,
• vars(𝐶−𝑥

𝑗) ∩ 𝑥 = ∅,
• vars(𝐶𝑥

𝑗) ⊆ 𝑥 , and
• 𝐶𝑥

𝑗 =
∨

𝑠∈[𝑛 𝑗] ℓ𝑗,𝑠 , with 𝑛 𝑗 ⩽ 𝑙 .
Then, we can construct in logspace an equisatisfiable (𝑘 + 𝑙)-DQBFcnf formula.

Proof. We construct
Φ′ = ∀𝑧,∀𝑢1, . . . ,∀𝑢𝑙 , ∃𝑦1 (𝐷1), . . . , ∃𝑦𝑘 (𝐷𝑘), ∃𝑡1 (𝐷 ∪ 𝑢1), . . . , ∃𝑡𝑙 (𝐷 ∪ 𝑢𝑙). 𝜑 ′ ,

where each 𝑢𝑖 is of length ⌈log2 𝑛⌉ + 1, and 𝜑 ′ consists of clauses encoding

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:7

• ((𝑢1 = 𝑖) ∧ (𝑢𝑠+1 = 𝑖)) → (𝑡1 ↔ 𝑡𝑠+1) for 𝑖 ∈ [𝑛] and 𝑠 ∈ [𝑙 − 1], and
• (∧𝑠∈[𝑛 𝑗] (𝑢𝑠 = ind(ℓ𝑗,𝑠)) → (𝐶−𝑥

𝑗 ∨∨
𝑠∈[𝑛 𝑗] (𝑡𝑠 ↔ sgn(ℓ𝑗,𝑠))) for 𝑗 ∈ [𝑚],

where ind(ℓ) denotes the index 𝑖 where 𝑧𝑖 = var(ℓ) for a literal ℓ .
The fact that Φ′ is a (𝑘 + 𝑙)-DQBFcnf formula is easy to verify. Note that each constraint in 𝜑 ′ is of the form

𝑄 → 𝐶 ∨ 𝜓 , where 𝑄 is a DNF, 𝐶 is a CNF, and 𝜓 involves a constant number of variables. Thus, it can be
transformed into the conjunction of a constant number of clauses.
We prove the equisatisfiability by transforming a model of Φ to a model of Φ′ and vice versa. Let 𝑓1, . . . , 𝑓𝑛,

𝑔1, . . . , 𝑔𝑘 be a model of Φ, where each 𝑓𝑖 is the Skolem function for 𝑥𝑖 and 𝑔𝑖 is the Skolem function for 𝑦𝑖 . We
construct the Skolem function

ℎ𝑠 =
∧
𝑖∈[𝑛]

((𝑢𝑠 = 𝑖) → 𝑓𝑖)

for 𝑡𝑠 for each 𝑠 ∈ [𝑙],
We now show that 𝑔1, . . . , 𝑔𝑘 , ℎ1, . . . , ℎ𝑙 is a model for Φ′. First note that ℎ𝑠 depends only on variables in 𝐷 ∪𝑢𝑠 ,

thus it is a valid Skolem function. Consider an arbitrary assignment (𝑎,𝑏) over 𝑧 and 𝑢1, . . . , 𝑢𝑙 . For any 𝑠 ∈ [𝑙 − 1],
if 𝑢1 = 𝑖 and 𝑢𝑠+1 = 𝑖 both hold for some 𝑖 ∈ [𝑛], we have ℎ1 = ℎ𝑠+1 = 𝑓𝑖 by construction, so 𝑡1 ↔ 𝑡𝑠+1 must
evaluate to true under (𝑎, 𝑏). For any 𝑗 ∈ [𝑚], if (∧𝑠∈[𝑛 𝑗] (𝑢𝑠 = ind(ℓ𝑗,𝑠)) holds, we consider the corresponding
clause 𝐶 𝑗 in Φ. Since 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑘 is a model of Φ, either 𝐶−𝑥

𝑗 is satisfied by 𝑔1, . . . , 𝑔𝑘 and 𝑎 or at least one
of ℓ𝑗1 , . . . , ℓ𝑗,𝑛 𝑗

is satisfied by some 𝑓𝑖 . In the former case, 𝐶−𝑥
𝑗 will satisfy the corresponding constraint in Φ′. In

the latter case, we have 𝑡𝑠 = 𝑓ind(ℓ𝑗,𝑠) , and thus the disjunction
∨

𝑠∈[𝑛 𝑗] (𝑦𝑠 ↔ sgn(ℓ𝑗,𝑠)) must be satisfied. We
conclude that 𝑔1, . . . , 𝑔𝑘 , ℎ1, . . . , ℎ𝑙 is a model for Φ′.
We now prove the other direction. To ease notation, we write 𝑎𝑢𝑠

𝑖
to denote the assignment satisfying 𝑢𝑠 = 𝑖

for any 𝑖 ∈ [𝑛] and 𝑠 ∈ [𝑙]. Let 𝑔1, . . . , 𝑔𝑘 , ℎ1, . . . , ℎ𝑙 be a model for Φ′. We construct the Skolem function

𝑓𝑖 = ℎ1 [𝑎𝑢1
𝑖
]

for 𝑥𝑖 for each 𝑖 ∈ [𝑛]. We now show that 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑘 is a model for Φ. First, note that 𝑓𝑖 depends only
on variables in 𝐷 , so it is a valid Skolem function for 𝑥𝑖 . Next, observe that the constraint ((𝑢1 = 𝑖) ∧ (𝑢𝑠+1 =

𝑖)) → (𝑡1 ↔ 𝑡𝑠+1) guarantees that ℎ1 [𝑎𝑢1] = ℎ𝑠+1 [𝑎𝑢𝑠+1] for any 𝑠 ∈ [𝑙 − 1]. We can thus substitute all occurrences
of ℎ𝑠+1 with ℎ1. Finally, consider an assignment 𝑎𝑧 and a clause 𝐶 𝑗 . Note that 𝑔1, . . . , 𝑔𝑘 , ℎ1, . . . , ℎ𝑙 satisfies the
constraint ©­«

∧
𝑠∈[𝑛 𝑗]

(𝑢𝑠 = ind(ℓ𝑗,𝑠)
ª®¬ → ©­«𝐶−𝑥

𝑗 ∨
∨

𝑠∈[𝑛 𝑗]
(𝑡𝑠 ↔ sgn(ℓ𝑗,𝑠))

ª®¬
over all assignments on the universal variables. In particular, by instantiating each 𝑢𝑠 with ind(ℓ𝑗,𝑠), we have

𝐶−𝑥
𝑗 ∨

∨
𝑠∈[𝑛 𝑗]

(𝑡 ind(ℓ𝑗,𝑠)
𝑠 ↔ sgn(ℓ𝑗,𝑠))

must always be satisfied. That is, if 𝐶−𝑥
𝑗 is not satisfied by 𝑔1, . . . , 𝑔𝑘 , then at least one of ℎ1 [𝑎𝑢1

ind(ℓ𝑗,1)], . . . ,
ℎ1 [𝑎𝑢1

ind(ℓ𝑗,𝑛𝑗
)] must be assigned to sgn(ℓ𝑗,𝑠). It follows by construction of the 𝑓𝑖 ’s that 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑘 must

satisfies 𝐶 𝑗 . □

Intuitively, Lemma 4.1 says that for DQBFcnf formulas, existential variables sharing the same dependency set
can be “compressed”, as long as each clause contains only a small number of such variables. In addition, we make
the following remark.

Remark 4.2. If 𝑘 = 0 and 𝐷 = ∅, the constructed formula becomes a 𝑙-DQBFdcnf formula.

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

6:8 • Cheng, Fung, Jiang, Slivovsky & Tan

We will use Lemma 4.1 and Remark 4.2 to reduce different SAT and QBF formulas to corresponding DQBF
subclasses in Sections 5 and 6 to obtain the desired hardness results.

5 Complexity of sat(𝑘-DQBF𝛼cnf)
In this section, we consider the complexity of sat(𝑘-DQBF𝛼cnf) and sat(DQBF𝛼cnf), with a focus on the case
where 𝛼 = d. We first prove an important property of the expansion of DQBFdcnf formulas in Section 5.1. Then,
in Sections 5.2 and 5.3 we show that sat(𝑘-DQBFdcnf) is of the same complexity as 𝑘-SAT for 𝑘 ⩾ 2,2 and that
sat(DQBFdcnf) is of the same complexity as SAT. This shows that, in stark contrast to the DNF case in the previous
section, with pairwise disjoint dependency sets and with CNF matrix, the exponential gap between SAT and
DQBF disappears. Finally, we discuss other dependency structures in Section 5.4.

5.1 Universal Expansion of DQBFdcnf
In this section, we show a useful property of the expansion of DQBFdcnf formulas. We fix a 𝑘-DQBFdcnf formula:

Φ = ∀𝑥, ∃𝑦1 (𝐷1), . . . , ∃𝑦𝑘 (𝐷𝑘).
∧
𝑗∈[𝑚]

𝐶 𝑗 . (2)

Let 𝑦 = (𝑦1, . . . , 𝑦𝑘). Given an assignment 𝑎 on 𝑥 and 𝑏 on 𝑦, for every 𝑖 ∈ [𝑘], let 𝑎𝑖 be the restriction of 𝑎 to 𝐷𝑖

and 𝑏𝑖 be the restriction of 𝑏 to 𝑦𝑖 .
Recall that for a DQBF formula Φ, each instantiated clause in exp(Φ) corresponds to a falsifying assignment of

the matrix of Φ. For a formula in CNF, the set of falsifying assignments can be represented by the union of the
set of falsifying assignments of each individual clause. This allows us to represent the instantiated clauses in
exp(Φ) as the union of polynomially many sets when Φ is a DQBFdcnf formula. Moreover, the disjoint dependency
structure allows us to further represent each of these sets as the Cartesian product of variable-disjoint sets of
instantiated literals. To formally state the property, we first define some notation.
For a clause 𝐶 𝑗 in Φ, we write 𝐶𝑖

𝑗 (Φ) to denote the subset of 𝐶 𝑗 within 𝑦𝑖 ’s dependency set, L𝑖, 𝑗 (Φ) the set of
instantiated literals 𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 where the assignment (𝑎𝑖 , 𝑏𝑖) falsifies 𝐶𝑖

𝑗 , and ℭ 𝑗 (Φ) the set of instantiated clauses
C𝑎,𝑏 where (𝑎,𝑏) falsifies ¬𝐶 𝑗 . We now formally define these sets.

Definition 5.1. Let Φ be a 𝑘-DQBFdcnf formula as in (2). For every 𝑗 ∈ [𝑚] and 𝑖 ∈ [𝑘], we define the sets 𝐶𝑖
𝑗 (Φ),

L𝑖, 𝑗 (Φ) and ℭ 𝑗 (Φ):
• 𝐶𝑖

𝑗 (Φ) B {ℓ ∈ 𝐶 𝑗 | var(ℓ) ∈ 𝐷𝑖 ∪ {𝑦𝑖 }}.
• L𝑖, 𝑗 (Φ) B {𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 | (𝑎𝑖 , 𝑏𝑖) ≃ ¬𝐶𝑖

𝑗 }.
• ℭ 𝑗 (Φ) B

{
C𝑎,𝑏

�� (𝑎, 𝑏) ≃ ¬𝐶 𝑗

}
.

When Φ is clear from the context, we simply write 𝐶𝑖
𝑗 , L𝑖, 𝑗 and ℭ 𝑗 .

We remark that (𝑎, 𝑏) ≃ ¬𝐶 𝑗 if and only if (𝑎,𝑏) falsifies 𝐶 𝑗 , and similarly (𝑎𝑖 , 𝑏𝑖) ≃ ¬𝐶𝑖
𝑗 if and only if (𝑎𝑖 , 𝑏𝑖)

falsifies𝐶𝑖
𝑗 . Note also that exp(Φ) = ∧

𝑗∈[𝑚]
∧

𝐶∈ℭ𝑗
𝐶 and that the setsL1, 𝑗 , . . . ,L𝑘,𝑗 are pairwise variable-disjoint.

We now state the property formally.

Lemma 5.2. Let Φ be as in Eq. (2). For every 𝑗 ∈ [𝑚], ℭ 𝑗 = L1, 𝑗 × · · · × L𝑘,𝑗 .

Proof. We fix an arbitrary 𝑗 ∈ [𝑚]. We first prove the “⊆” direction. Let C𝑎,𝑏 be a clause in ℭ 𝑗 . That is, (𝑎,𝑏)
is an assignment that falsifies 𝐶 𝑗 . Let 𝑎𝑖 be the restriction of 𝑎 on 𝐷𝑖 and 𝑏𝑖 be the restriction of 𝑏 on 𝑦𝑖 , for every
𝑖 ∈ [𝑘]. By definition, C𝑎,𝑏 =

∨
𝑖∈[𝑘] 𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 . Since (𝑎, 𝑏) falsifies 𝐶 𝑗 , it is consistent with the cube ¬𝐶 𝑗 . Hence,

2There is no dependency structure for 𝑘 = 1.

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:9

for every 𝑖 ∈ [𝑘], each 𝑎𝑖 , 𝑏𝑖 is consistent with the cube ¬𝐶𝑖
𝑗 . By definition, the literal 𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 belongs to L𝑖, 𝑗 , for

every 𝑖 ∈ [𝑘].
Next, we prove the “⊇” direction. Let 𝐶 B (𝐿1 ∨ · · · ∨ 𝐿𝑘) ∈ L1, 𝑗 × · · · × L𝑘,𝑗 . By definition, for every 𝑖 ∈ [𝑘],

there is assignment (𝑎𝑖 , 𝑏𝑖) such that 𝐿𝑖 is the literal 𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 and (𝑎𝑖 , 𝑏𝑖) is consistent with the cube ¬𝐶𝑖
𝑗 . Due

to the disjointness of the dependency sets, all the assignments (𝑎𝑖 , 𝑏𝑖)’s are pairwise consistent. Let (𝑎,𝑏) be
their union

⋃
𝑖∈[𝑘] (𝑎𝑖 , 𝑏𝑖).3 Since each (𝑎𝑖 , 𝑏𝑖) is consistent with ¬𝐶𝑖

𝑗 , (𝑎,𝑏) is consistent with all of ¬𝐶1
𝑗 , . . . ,¬𝐶𝑘

𝑗 .
Therefore, (𝑎,𝑏) is a falsifying assignment of 𝐶 𝑗 . By definition, the clause C𝑎,𝑏 =

∨
𝑖∈[𝑘] 𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 is in ℭ 𝑗 . □

5.2 2-DQBFdcnf
In this section we will show that sat(2-DQBFdcnf) is NL-complete.

Theorem 5.3. sat(2-DQBFdcnf) is NL-complete.

Before we proceed to the formal proof, we first review some notation and terminology. Recall that the expansion
of a 2-DQBF formula (even when the matrix is in an arbitrary form) is a 2-CNF formula, which can be viewed as
a directed graph, called the implication graph (of the 2-CNF formula) (Aspvall et al. 1979). The vertices in the
implication graph are the literals, and for every clause (ℓ ∨ ℓ ′) in the formula, there are two edges, (¬ℓ → ℓ ′)
and (¬ℓ ′ → ℓ).
The following notion of a disimplex will be useful.

Definition 5.4 (Disimplex (Figueroa and Llano 2010)). Given two sets of vertices A,B, the disimplex from A to
B is the directed graph 𝐾 (A,B) B (A ∪ B,A × B).

In other words, a disimplex 𝐾 (A,B) is a complete directed bipartite graph where all the edges are oriented
from A to B.
The rest of this subsection is devoted to the proof of Theorem 5.3. For the rest of this subsection, we fix a

2-DQBFdcnf formula Φ = ∀𝑧1, 𝑧2, ∃𝑦1 (𝑧1), ∃𝑦2 (𝑧2).
∧

𝑗∈[𝑚] 𝐶 𝑗 . We will simply write 𝐶𝑖
𝑗 , L𝑖, 𝑗 and ℭ 𝑗 to denote the

sets𝐶𝑖
𝑗 (Φ), L𝑖, 𝑗 (Φ) and ℭ 𝑗 (Φ) defined in Definition 5.1. For a set L of literals, we denote by L̂ the set of negated

literals in L, i.e., L̂ B {¬𝐿 | 𝐿 ∈ L}.
We first show that the implication graph of exp(Φ) is a finite union of disimplices, and that the length of any

shortest path between two vertices is bounded above by 2𝑚.

Lemma 5.5. Let 𝐺 = (V, E) be the implication graph of exp(Φ). The set of edges E can be represented as

E =
⋃
𝑗∈[𝑚]

(L̂1, 𝑗 × L2, 𝑗) ∪ (L̂2, 𝑗 × L1, 𝑗) ,

which is the union of the edge sets of 𝑚 pairs of disimplices. Moreover, for every two vertices 𝐿, 𝐿′ ∈ V , if 𝐿′ is
reachable from 𝐿, then there exists a path from 𝐿 to 𝐿′ of length at most 2𝑚.

Proof. By definition,

E =
{
(¬𝑌1,𝑧1 ⊕ 𝑏1, 𝑌2,𝑧2 ⊕ 𝑏2), (¬𝑌2,𝑧2 ⊕ 𝑏2, 𝑌1,𝑧1 ⊕ 𝑏1)

��𝜑 [𝑎𝑧1
1 , 𝑎

𝑧2
2 , 𝑏

𝑦1
1 , 𝑏

𝑦2
2] = ⊥

}
.

Since any assignment that falsifies 𝜑 must falsify some clause 𝐶 𝑗 in 𝜑 , we have

E =
⋃
𝑗∈[𝑚]

⋃
C𝑎̄,𝑏 ∈ℭ𝑗

{
(¬𝑌1,𝑧1 ⊕ 𝑏1, 𝑌2,𝑧2 ⊕ 𝑏2), (¬𝑌2,𝑧2 ⊕ 𝑏2, 𝑌1,𝑧1 ⊕ 𝑏1)

}
.

3Note that, as stated in Section 2.3, we assume that
⋃

𝑖∈ [𝑘] 𝐷𝑖 = 𝑥 .

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

6:10 • Cheng, Fung, Jiang, Slivovsky & Tan

By Lemma 5.2, we have ℭ 𝑗 = {(𝐿1 ∨ 𝐿2) | 𝐿1 ∈ L1, 𝑗 , 𝐿2 ∈ L2, 𝑗 } for every 𝑗 ∈ [𝑚]. Therefore,

E =
⋃
𝑗∈[𝑚]

(
L̂1, 𝑗 × L2, 𝑗

)
∪
(
L̂2, 𝑗 × L1, 𝑗

)
.

For the second part of the proof, assume, for the sake of contradiction, that 𝑃 = (𝐿0, . . . , 𝐿𝑛) is a shortest path
from 𝐿 to 𝐿′ with 𝑛 > 2𝑚. Then, by the pigeonhole principle, there must be some 0 ⩽ 𝑖1 < 𝑖2 < 𝑛 such that
(𝐿𝑖1 , 𝐿𝑖1+1) and (𝐿𝑖2 , 𝐿𝑖2+1) belongs to the same disimplex 𝐾 ⊆ E, and thus (𝐿𝑖1 , 𝐿𝑖2+1) ∈ 𝐾 ⊆ E. We can then
construct a shorter path 𝑃 ′ = (𝐿0, . . . , 𝐿𝑖1 , 𝐿𝑖2+1, . . . , 𝐿𝑛) from 𝐿 to 𝐿′, which contradicts with the assumption that
𝑃 is a shortest path. □

Proof of Theorem 5.3. For the NL membership, we devise an algorithm by checking the unsatisfiability of
exp(Φ) directly on these disimplices. We present an NL algorithm that checks the unsatisfiability of exp(Φ) by
looking for cycles containing both an instantiated literal and its negation in the implication graph 𝐺 = (V, E) of
exp(Φ).4
A naïve idea is to first non-deterministically guess a literal 𝐿 and the paths 𝑃 from 𝐿 to ¬𝐿 and 𝑃 ′ from

¬𝐿 to 𝐿. However, since |V| is exponential in |𝑥 |, representing a literal 𝐿 ∈ V takes linear space. We instead
make use of Lemma 5.5 and guess the disimplex each edge of 𝑃, 𝑃 ′ belongs in, denoted by the sequences
(𝐾 (A1,B1), . . . , 𝐾 (A𝑛,B𝑛)) and (𝐾 (A′

1,B′
1), . . . , 𝐾 (A′

𝑛′ ,B′
𝑛′)) with 𝑛, 𝑛′ ∈ [2𝑚], where each A,B is of the

form L𝑖, 𝑗 or L̂𝑖, 𝑗 . We then check if
• for every step 𝑗 ∈ [𝑛 − 1], whether there exists some 𝐿 𝑗 ∈ B𝑗 ∩ A 𝑗+1,
• for every step 𝑗 ′ ∈ [𝑛′ − 1], whether there exists some 𝐿′

𝑗 ′ ∈ B′
𝑗 ′ ∩ A′

𝑗 ′+1, and
• whether there exists some 𝐿0 ∈ A1 ∩ B̂𝑛 ∩ Â′

1 ∩ B′
𝑛′ .

We reject if one of the checks fails, and accept if all checks succeed. In the latter case, there are paths 𝑃 =

(𝐿0, 𝐿1, . . . , 𝐿𝑛−1,¬𝐿0) and 𝑃 ′ = (¬𝐿0, 𝐿
′
1, 𝐿

′
2, . . . , 𝐿

′
𝑛′−1, 𝐿0).

In particular, L𝑖, 𝑗 ∩ L𝑖′, 𝑗 ′ is non-empty if and only if 𝑖 = 𝑖′ and 𝐶𝑖
𝑗 and 𝐶𝑖′

𝑗 ′ are consistent. The consistency
check can be done by keeping two pointers to the position in the clause using log(|𝑥 | + 2) bits per pointer. This
can easily be generalised to check the intersection of any constant number of L𝑖, 𝑗 ’s. For L̂𝑖, 𝑗 , simply replace 𝐶𝑖

𝑗

with the clause 𝐶𝑖
𝑗 with the sign of 𝑦𝑖 flipped if a literal of 𝑦𝑖 is present, i.e.,

𝐶𝑖
𝑗 B

(
𝐶𝑖
𝑗 \ {𝑦𝑖 ,¬𝑦𝑖 }

)
∪
(
¬𝐶𝑖

𝑗 ∩ {𝑦𝑖 ,¬𝑦𝑖 }
)
.

For the hardness proof, note that a 2-SAT formula is essentially a DQBFcnf where all variables share the
common dependency set ∅ and every clause contains exactly two literals. By Lemma 4.1 and Remark 4.2, it is
equisatisfiable to a 2-DQBFdcnf . □

5.3 𝑘-DQBFdcnf : 𝑘 ⩾ 3 and Non-Constant 𝑘
For 𝑘 ⩾ 3 and even arbitrary DQBFdcnf , we show that it is NP-complete. Let Φ be as in Eq. (2). To show the NP
membership, we first show that for every 𝑗 ∈ [𝑚], some 𝑦𝑖 is responsible for satisfying all the clauses in ℭ 𝑗 .

Lemma 5.6. Let Φ be as in Eq. (2) and let 𝑌 be the vector of variables in exp(Φ). For every 𝑗 ∈ [𝑚] and every
assignment 𝑎 on 𝑌 , 𝑎 satisfies the CNF formula

∧
C∈ℭ𝑗

C if and only if 𝑎 satisfies the cube
∧

𝐿∈L𝑖,𝑗
𝐿 for some 𝑖 ∈ [𝑘].

Proof. We first prove the “if” direction. Let 𝑎 be an assignment on 𝑌 . If 𝑎 satisfies the cube
∧

𝐿∈L𝑖,𝑗
𝐿, then, for

every clause C ∈ ℭ𝔧, by Lemma 5.2, there exists some 𝐿 ∈ L𝑖, 𝑗 ∩ C that is satisfied by 𝑎. Thus, C is satisfied by 𝐿.
4Recall that a 2-SAT formula 𝜑 is unsatisfiable if and only if there is a cycle containing both a literal and its negation in the implication graph
of 𝜑 .

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:11

For the “only if” direction, assume that 𝑎 does not satisfy the cube
∧

𝐿∈L𝑖,𝑗
𝐿 for every 𝑖 ∈ [𝑘]. That is, for every

𝑖 ∈ [𝑘], there exists some 𝐿𝑖 ∈ L𝑖, 𝑗 such that 𝑎(var(𝐿𝑖)) ≠ sgn(𝐿𝑖). It follows that the clause
(∨

𝑖∈[𝑘] 𝐿𝑖
)
∈ ℭ 𝑗 is

falsified by 𝑎, and thus 𝑎 does not satisfy
∧

C∈ℭ𝑗
C. □

Remark 5.7. Recall that exp(Φ) = ∧
𝑗∈[𝑚]

∧
C∈ℭ𝑗

C. Thus, Lemma 5.6 can be reformulated as follows. For every
assignment 𝑎𝑌 , 𝑎𝑌 satisfies exp(Φ) if and only if there is a function 𝜉 : [𝑚] → [𝑘] such that for every 𝑗 ∈ [𝑚],
𝑎𝑌 satisfies the cube

∧
𝐿∈L𝜉 (𝑗), 𝑗 𝐿. Intuitively, the function 𝜉 is the mapping that maps index 𝑗 to index 𝑖 in the

statement in Lemma 5.6. This formulation will be useful later on.

The next lemma shows the NP membership of sat(DQBFdcnf).

Lemma 5.8. sat(DQBFdcnf) is in NP.

Proof. Consider a DQBFdcnf formula:

Φ = ∀𝑧1, . . . ,∀𝑧𝑘 , ∃𝑦1 (𝑧1), . . . , ∃𝑦𝑘 (𝑧𝑘).
∧
𝑗∈[𝑚]

𝐶 𝑗

with 𝑘 existential variables and𝑚 clauses.
By the reformulation of Lemma 5.6 in Remark 5.7, an assignment 𝑎 on 𝑌 satisfies exp(Φ) if and only if there

exists a mapping 𝜉 : [𝑚] → [𝑘] such that 𝑎𝑌 satisfies
∧

𝑗∈[𝑚]
∧

𝐿∈L𝜉 (𝑗), 𝑗 𝐿, or equivalently, if there exists a partition
{𝑆𝑖 }𝑖∈[𝑘] of [𝑚] such that for each 𝑖 ∈ [𝑘], the following QBF Φ𝑖 is satisfiable:

Φ𝑖 = ∀𝑧𝑖 , ∃𝑦𝑖 .
∧
𝑗∈𝑆𝑖

𝐶𝑖
𝑗 .

Note that since Φ𝑖 contains only one existential variable and it depends on all universal variables, checking the
satisfiability of Φ𝑖 is in P using Lemma 2.3.5 An NP algorithm guesses the partition {𝑆𝑖 }𝑖∈[𝑘] and verifies that Φ𝑖

is satisfiable for every 𝑖 ∈ [𝑘]. □

Theorem 5.9. sat(𝑘-DQBFdcnf) for every 𝑘 ⩾ 3 and sat(DQBFdcnf) are NP-complete.

Proof. By Lemma 5.8, sat(DQBFdcnf) is in NP. Since 𝑘-DQBFdcnf ⊆ DQBFdcnf , sat(𝑘-DQBF
d
cnf) is also in NP for

every constant 𝑘 .
For the hardness proof, note that a 3-SAT formula is essentially a DQBFcnf where all variables share the common

dependency set ∅ and every clause contains exactly three literals. By Lemma 4.1 and Remark 4.2, it is equisatisfiable
to a 3-DQBFdcnf . Since adding more existential variables only increases the complexity, sat(𝑘-DQBFdcnf) for every
𝑘 ⩾ 3 and sat(DQBFdcnf) are also NP-hard. □

5.4 𝑘-DQBF𝛼cnf : Different Dependency Structure
It has been shown by Scholl et al. (2019) that sat(DQBFdecnf) is ΣP

3 -complete and sat(DQBFdeccnf) is NEXP-complete.
Since DQBFdeccnf ⊆ DQBFdscnf ⊆ DQBF and sat(DQBF) is also NEXP-complete, we know sat(DQBFdscnf) is NEXP-
complete. In this section, we show a surprising result that, when 𝑘 is a constant, sat(𝑘-DQBF𝛼cnf) has the
same complexity as 𝑘-SAT and sat(𝑘-DQBFdcnf) for every 𝛼 ∈ {de, dec, ds}. Since 𝑘-DQBFdcnf ⊆ 𝑘-DQBFdecnf ⊆
𝑘-DQBFdeccnf ⊆ 𝑘-DQBF

ds
cnf , it suffices to show the results for sat(𝑘-DQBFdscnf).

We start with sat(2-DQBFdscnf).

Theorem 5.10. sat(2-DQBFdscnf) is NL-complete.
5In fact, it is in L, as shown later in Theorem 6.1.

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

6:12 • Cheng, Fung, Jiang, Slivovsky & Tan

Proof. Since 2-DQBFdscnf ⊇ 2-DQBFdcnf , the hardness follows from Theorem 5.3. For NL membership, consider
a 2-DQBFdscnf formula Φ B ∀𝑥, ∃𝑦1 (𝐷1), ∃𝑦2 (𝐷2). 𝜑 . First, we check whether 𝐷1 and 𝐷2 are disjoint using only
logarithmic space. (See Remark 2.1.) If𝐷1 and𝐷2 are disjoint, we use the algorithm from Theorem 5.3 to determine
its satisfiability. Otherwise, without loss of generality, we may assume that 𝐷1 ⊆ 𝐷2. We will show that this case
can be decided in deterministic logarithmic space. Indeed, in this case Φ is a standard QBF and we can perform a
level-ordered Q-resolution proof (Janota and Marques-Silva 2015). Since there are only two existential variables,
any proof uses at most four clauses, and we can simply iterate through all 4-tuples of clause indices and check
whether Q-resolution can be performed.

In the following, we give an alternative proof that works directly on the semantics of QBF. To ease notation,
we write 𝑧1 B 𝐷1, 𝑧2 B 𝐷2 \ 𝐷1, and 𝑧3 B 𝑥 \ 𝐷2. Note that Φ is equivalent to a QBF

Ψ = ∀𝑧1, ∃𝑦1,∀𝑧2, ∃𝑦2,∀𝑧3. 𝜑
= ∀𝑧1, ∃𝑦1,∀𝑧2.

(
∀𝑧3. 𝜑 [⊥𝑦2] ∨ ∀𝑧3. 𝜑 [⊤𝑦2]

)
= ∀𝑧1.

(
∀𝑧2.

(
∀𝑧3. 𝜑 [⊥𝑦2 .⊥𝑦1] ∨ ∀𝑧3 . 𝜑 [⊤𝑦2 ,⊥𝑦1]

)
∨ ∀𝑧2.

(
∀𝑧3. 𝜑 [⊥𝑦2 .⊤𝑦1] ∨ ∀𝑧3 . 𝜑 [⊤𝑦2 ,⊤𝑦1]

))
which is false if and only if there are assignments 𝑎𝑧1 , 𝑏𝑧2 , and 𝑐𝑧2 such that

∀𝑧3 .𝜑 [⊥𝑦1 ,⊥𝑦2 , 𝑎𝑧1 , 𝑏𝑧2] ∨ ∀𝑧3.𝜑 [⊥𝑦1 ,⊤𝑦2 , 𝑎𝑧1 , 𝑏𝑧2] ∨ ∀𝑧3.𝜑 [⊤𝑦1 ,⊥𝑦2 , 𝑎𝑧1 , 𝑐𝑧2] ∨ ∀𝑧3 .𝜑 [⊤𝑦1 ,⊤𝑦2 , 𝑎𝑧1 , 𝑐𝑧2]

is false. Since each of the four disjuncts is still in CNF, the formula is false if and only if each disjunct has a
falsified clause. This is equivalent to finding four clauses 𝐶1,𝐶2,𝐶3,𝐶4 ∈ 𝜑 such that

• the clauses 𝐶1,𝐶2,𝐶3,𝐶4 are consistent on the variables in 𝑧1,
• the clauses 𝐶1,𝐶2 are consistent on the variables in 𝑧2,
• the clauses 𝐶3,𝐶4 are consistent on the variables in 𝑧2, and
• ¬𝐶1, ¬𝐶2, ¬𝐶3, and ¬𝐶4 are consistent with ¬𝑦1 ∧ ¬𝑦2, ¬𝑦1 ∧ 𝑦2, 𝑦1 ∧ ¬𝑦2, and 𝑦1 ∧ 𝑦2, respectively.

To find such clauses, we iterate through all 4-tuples of clause indices and check whether the properties hold. □

Next, we show that for every 𝑘 ⩾ 3, sat(𝑘-DQBFdscnf) is NP-complete, just like 𝑘-SAT.

Theorem 5.11. For every constant 𝑘 ⩾ 3, sat(𝑘-DQBFdscnf) is NP-complete.

Before we present the proof of Theorem 5.11, we note that since 𝑘-DQBFdecnf ⊆ 𝑘-DQBF
dec
cnf ⊆ 𝑘-DQBF

ds
cnf , we

obtain the following results as a corollary of Theorems 5.3 and 5.9 to 5.11.

Corollary 5.12. sat(𝑘-DQBFdecnf) and sat(𝑘-DQBFdeccnf) are NL-complete when 𝑘 = 2 and NP-complete when
𝑘 ⩾ 3.

The rest of this section is devoted to the proof of Theorem 5.11.

Proof of Theorem 5.11. We will consider the membership proof. The hardness follows from Theorem 5.9.
We fix a 𝑘-DQBFdscnf formula

Φ B ∀𝑥, ∃𝑦1 (𝐷1), . . . , ∃𝑦𝑘 (𝐷𝑘).
∧
𝑗∈[𝑚]

𝐶 𝑗 . (3)

Without loss of generality, we may assume that no existential variable has an empty dependency set, since our
NP algorithm can guess an assignment to such variables at the outset. By Lemma 2.2, we may also assume that
every universal variable appears in some dependency set. We say that a dependency set 𝐷𝑖 is maximal if there is
no 𝑗 where 𝐷𝑖 ⊊ 𝐷 𝑗 . An existential variable 𝑦𝑖 is maximal if its dependency set is maximal.

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:13

To decide the satisfiability of Φ, our algorithm works by recursion on the number of existential variables. The
base case is when there is only one existential variable. This case can be decided in polynomial time and, in fact,
in deterministic logspace. See, e.g., Theorem 6.1.
For the induction step, we pick a maximal variable 𝑦𝑡 . There are two cases.

Case 1: 𝐷𝑡 = 𝑥 . We apply Lemma 2.3 and eliminate 𝑦𝑡 , resulting in a formula with one less existential variable
and 𝑂 (𝑚2) clauses. We then proceed recursively.

Case 2: 𝐷𝑡 ≠ 𝑥 . We deal with this case by generalising the technique in Lemma 5.8.
Let {𝑖1, . . . , 𝑖𝑝 } = {𝑖 |𝐷𝑖 ⊆ 𝐷𝑡 } and {𝑖′1, . . . , 𝑖′𝑞} = {𝑖′ |𝐷𝑖′ ∩𝐷𝑡 = ∅}. For each 𝑗 ∈ [𝑚], we partition𝐶 𝑗 into two

clauses:
𝐶+𝑡
𝑗 B{ℓ | dep(ℓ) ⊆ 𝐷𝑡 }

𝐶−𝑡
𝑗 B𝐶 𝑗 \𝐶+𝑡

𝑗

Intuitively, 𝐶+𝑡
𝑗 is the subclause of 𝐶 𝑗 that includes all the literals with dependency sets inside 𝐷𝑡 . On the other

hand, 𝐶−𝑡
𝑗 is the subclause that contains the rest of the literals. Due to the laminar structure of the dependency

sets and that 𝑦𝑡 is a maximal variable, 𝐶−𝑡
𝑗 = {ℓ | dep(ℓ) ∩ 𝐷𝑡 = ∅}.

For a function 𝜉 : [𝑚] → {+𝑡,−𝑡}, we define two formulas:

Φ+𝑡,𝜉 B∀𝑥, ∃𝑦𝑖1 (𝐷𝑖1), . . . , ∃𝑦𝑖𝑝 (𝐷𝑖𝑝).
∧

𝑗 :𝜉 (𝑗)=+𝑡
𝐶+𝑡
𝑗

Φ−𝑡,𝜉 B∀𝑥, ∃𝑦𝑖′1 (𝐷𝑖′1
), . . . , ∃𝑦𝑖′𝑞 (𝐷𝑖′𝑞).

∧
𝑗 :𝜉 (𝑗)=−𝑡

𝐶−𝑡
𝑗

We have the following lemma.

Lemma 5.13. Φ is satisfiable if and only if there is a function 𝜉 : [𝑚] → {+𝑡,−𝑡} such that Φ+𝑡,𝜉 and Φ−𝑡,𝜉 are
both satisfiable.

Note that guessing 𝜉 requires𝑚 bits. The algorithm guesses the function 𝜉 and verifies recursively that both
Φ+𝑡,𝜉 and Φ−𝑡,𝜉 are satisfiable. Since the algorithm terminates after 𝑘 steps, and 𝑘 is a constant, and the number of
clauses constructed in each recursive step is at most quadratically many, each step can be done in polynomial
time. □

It remains to prove Lemma 5.13. Let 𝑌 be the vector of variables in the expansion exp(Φ). We can show that an
assignment 𝑎 on 𝑌 satisfies exp(Φ) if and only if it satisfies exp(Φ+𝑡,𝜉) and exp(Φ−𝑡,𝜉) for some function 𝜉 .
we introduce the following additional notation and terminology. Let 𝑆𝑡 B {𝑦𝑖 |𝐷𝑖 ⊆ 𝐷𝑡 }. Note that 𝑦𝑡 ∈ 𝑆𝑡 .

To ease notation, we write 𝐷𝑐
𝑡 B 𝑥 \ 𝐷𝑡 and 𝑆𝑐𝑡 B 𝑦 \ 𝑆𝑡 . That is, 𝐷𝑐

𝑡 is the complement of 𝐷𝑡 w.r.t. 𝑥 , and 𝑆𝑐𝑡
is the complement of 𝑆𝑡 w.r.t. 𝑦. In the following, we will drop the subscript 𝑡 in 𝐷𝑡 , 𝑆𝑡 , 𝐷

𝑐
𝑡 , 𝑆

𝑐
𝑡 and simply write

𝐷, 𝑆, 𝐷𝑐 , 𝑆𝑐 .
For an assignment (𝑎𝐷 , 𝑏𝑆), we define the clause

cl(𝑎𝐷 , 𝑏𝑆) B
∨
𝑖∈𝑆

𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 ,

where each 𝑎𝑖 = 𝑎𝐷 (𝐷𝑖) and𝑏𝑖 = 𝑏𝑆 (𝑦𝑖). Similarly, for an assignment (𝑎𝐷𝑐

, 𝑏𝑆
𝑐), we define the clause

cl(𝑎𝐷𝑐

, 𝑏𝑆
𝑐) B

∨
𝑦𝑖 ∈𝑆𝑐

𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 ,

where each 𝑎𝑖 = 𝑎𝐷
𝑐 (𝐷𝑖) and 𝑏𝑖 = 𝑏𝑆

𝑐 (𝑦𝑖).

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

6:14 • Cheng, Fung, Jiang, Slivovsky & Tan

We now generalise Definition 5.1 to the laminar case.

Definition 5.14. Let Φ be as in Eq. (3). For every 𝑗 ∈ [𝑚], we define the sets

L∗
+𝑡, 𝑗 (Φ) B{cl(𝑎𝐷 , 𝑏𝑆) | (𝑎𝐷 , 𝑏𝑆) ≃ ¬𝐶+𝑡

𝑗 }
L∗

−𝑡, 𝑗 (Φ) B{cl(𝑎𝐷𝑐

, 𝑏𝑆
𝑐) | (𝑎𝐷𝑐

, 𝑏𝑆
𝑐) ≃ ¬𝐶−𝑡

𝑗 }
ℭ 𝑗 (Φ) B

{
C𝑎,𝑏

�� (𝑎𝑥 , 𝑏𝑦) ≃ ¬𝐶 𝑗

}
.

The following lemma is a generalisation of Lemma 5.2 to the laminar case.

Lemma 5.15. Let Φ be as in Eq. (3). Then, for every 𝑗 ∈ [𝑚], ℭ 𝑗 = L∗
+𝑡, 𝑗 (Φ) × L∗

−𝑡, 𝑗 (Φ).

Proof. The proof is a straightforward generalisation of Lemma 5.2. For the sake of completeness, we present
it here.
We fix an arbitrary 𝑗 ∈ [𝑚]. We first prove the “⊆” direction. Let C𝑎,𝑏 be a clause in ℭ 𝑗 . That is, (𝑎𝑥 , 𝑏𝑦) is an

assignment that falsifies 𝐶 𝑗 . By definition, C𝑎,𝑏 =
∨

𝑖∈[𝑘] 𝑌𝑖,𝑎𝑖 ⊕ 𝑏𝑖 . Since (𝑎, 𝑏) falsifies 𝐶 𝑗 , it is consistent with
the cube ¬𝐶 𝑗 .
Let 𝑎𝑡 = 𝑎𝑥 (𝐷), 𝑏𝑡 = 𝑏𝑦 (𝑆), 𝑎0 = 𝑎

𝑥 (𝐷𝑐), and 𝑏0 = 𝑏
𝑦 (𝑆𝑐). Both are consistent with the cubes ¬𝐶+𝑡

𝑗 and ¬𝐶−𝑡
𝑗 ,

respectively. By definition, the clause cl(𝑎𝐷𝑡 , 𝑏𝑆𝑡) is in L∗
+𝑡, 𝑗 (Φ) and the clause cl(𝑎𝐷𝑐

0 , 𝑏𝑆
𝑐

0) is in L∗
−𝑡, 𝑗 (Φ). The

inclusion follows, since
C𝑎,𝑏 = cl(𝑎𝐷𝑡 , 𝑏𝑆𝑡) ∨ cl(𝑎𝐷𝑐

0 , 𝑏𝑆
𝑐

0) .
Next, we prove the “⊇” direction. Let 𝐶 ∈ L∗

+𝑡, 𝑗 (Φ) × L∗
−𝑡, 𝑗 (Φ). We write 𝐶 = 𝐵1 ∨ 𝐵2, where 𝐵1 ∈ L∗

+𝑡, 𝑗 (Φ)
and 𝐵2 ∈ L∗

−𝑡, 𝑗 (Φ). By definition,
• there is assignment (𝑎𝐷1 , 𝑏𝑆1) such that 𝐵1 is the clause cl(𝑎𝐷1 , 𝑏𝑆1),
• there is assignment (𝑎𝐷𝑐

2 , 𝑏𝑆
𝑐

2) such that 𝐵2 is the clause cl(𝑎𝐷𝑐

2 , 𝑏𝑆
𝑐

2).
Since the dependency sets of the variables in 𝑆 are disjoint from the dependency sets of the variables in 𝑆𝑐 ,
the assignments (𝑎𝐷1 , 𝑏𝑆1) and (𝑎𝐷𝑐

2 , 𝑏𝑆
𝑐

2) are consistent. Let (𝑎𝑥 , 𝑏𝑦) be their union, which is consistent with
¬𝐶+𝑡

𝑗 ∧ ¬𝐶−𝑡
𝑗 . It follows that (𝑎𝑥 , 𝑏𝑦) is a falsifying assignment of 𝐶 𝑗 . By definition, the clause C𝑎,𝑏 = 𝐵1 ∨ 𝐵2 and

it is in ℭ 𝑗 . □

Now, Lemma 5.13 follows from the following lemma, which is the generalisation of Lemma 5.6.

Lemma 5.16. Let Φ be as in Eq. (3) and let 𝑌 be the vector of variables in exp(Φ). For every assignment 𝑎𝑌 , 𝑎𝑌

satisfies exp(Φ) if and only if it satisfies exp(Φ+𝑡,𝜉) and exp(Φ−𝑡,𝜉) for some function 𝜉 : [𝑚] → {+𝑡,−𝑡}.

Proof. We observe that

exp(Φ) =
∧
𝑗∈[𝑚]

∧
𝐶∈ℭ𝑗

𝐶 =
∧
𝑗∈[𝑚]

∧
(𝐶1,𝐶2) ∈L∗

+𝑡,𝑗 (Φ)×L∗
−𝑡,𝑗 (Φ)

𝐶1 ∨𝐶2 ,

where the second equality follows from Lemma 5.15. Thus, exp(Φ) is satisfiable if and only if there is a function
𝜉 : [𝑚] → {+𝑡,−𝑡} such that

©­«
∧

𝑗 :𝜉 (𝑗)=+𝑡

∧
𝐶1∈L∗

+𝑡,𝑗 (Φ)
𝐶1

ª®¬ ∧ ©­«
∧

𝑗 :𝜉 (𝑗)=−𝑡

∧
𝐶2∈L∗

−𝑡,𝑗 (Φ)
𝐶2

ª®¬
is satisfiable. The first part of the conjunction is precisely exp(Φ+𝑡,𝜉) and the second part is precisely exp(Φ−𝑡,𝜉).

□

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:15

6 Complexity of sat(𝑘-DQBFcnf)
In this section, we remove the constraint on the dependency structure and consider 𝑘-DQBFcnf . The case 𝑘 = 1
can be solved very efficiently.

Theorem 6.1. sat(1-DQBFcnf) is in L.

Proof. Let Φ = ∀𝑧1, 𝑧2, ∃𝑦 (𝑧1).
∧

𝑗∈[𝑚] 𝐶 𝑗 . Similar to the proof of Theorem 5.10, to show unsatisfiability, it
suffices to find 𝐶1,𝐶2 ∈ 𝜑 such that

• 𝐶1,𝐶2 are consistent on the variables in 𝑧1, and
• ¬𝐶1 and ¬𝐶2 are consistent with ¬𝑦 and 𝑦, respectively.

The correctness follows from the same reasoning. □

Next, we consider the case where 𝑘 = 2.

Theorem 6.2. sat(2-DQBFcnf) is coNP-complete.

Proof. Formembership, we give anNP algorithm for checking unsatisfiability. LetΦ B ∀𝑥, ∃𝑦1 (𝐷1), ∃𝑦2 (𝐷2). 𝜑
be be a 2-DQBFcnf formula. Let 𝑧 = 𝐷1 ∩ 𝐷2. Note that for every assignment 𝑎 on 𝑧, the induced formula Φ[𝑎] is
a 2-DQBFdcnf formula, the satisfiability of which can be decided in polynomial time by Theorem 5.3. Therefore,
to decide whether Φ is unsatisfiable, we can guess an assignment 𝑎 on 𝑧 and accept if and only if Φ[𝑎] is not
satisfiable.

For hardness, we provide a reduction from the 3-DNF tautology problem to sat(2-DQBFcnf). Let 𝜑 =
∨

𝑗∈[𝑚] 𝑄 𝑗

be a 3-DNF formula over the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛), where each 𝑄 𝑗 = (ℓ𝑗,1 ∧ ℓ𝑗,2 ∧ ℓ𝑗,3) is a 3-literal cube. We
construct the following 2-DQBFcnf formula:

Ψ = ∀𝑥,∀𝑢1,∀𝑢2, ∃𝑦1 (𝑥,𝑢1), ∃𝑦2 (𝑥,𝑢2).𝜓1 ∧𝜓2 ∧𝜓3 ∧𝜓4 ,

where 𝑢1, 𝑢2 have length 𝑂 (log𝑚) for representing the numbers in [𝑚] and𝜓1, . . . ,𝜓4 are as follows.
𝜓1 B(𝑢1 = 1) → 𝑦1

𝜓2 B
∧

𝑗∈[𝑚−1]

((
(𝑢1 = 𝑗 + 1) ∧ (𝑢2 = 𝑗)

)
→ (𝑦2 → 𝑦1)

)
𝜓3 B

(
(𝑢1 = 1) ∧ (𝑢2 =𝑚)

)
→ (𝑦2 → ¬𝑦1)

𝜓4 B
∧
𝑗∈[𝑚]

∧
𝑖∈[3]

((
(𝑢1 = 𝑗) ∧ (𝑢2 = 𝑗) ∧ ¬ℓ𝑗,𝑖

)
→ (𝑦1 → 𝑦2)

)
We claim that 𝜑 is a tautology if and only if Ψ is satisfiable. To see this, we fix an arbitrary assignment 𝑎 on 𝑥 and

consider the induced formula Ψ[𝑎]. Note that Ψ[𝑎] is a 2-DQBFdcnf formula with universal variables 𝑢1, 𝑢2. Since
|𝑢1 | = |𝑢2 | = log𝑚, the expansion exp(Ψ[𝑎]) is a 2-CNF formula with 2𝑚 variables 𝑌1,1, . . . , 𝑌1,𝑚, 𝑌2,1, . . . , 𝑌2,𝑚 .
Here we abuse the notation and write 𝑌𝑖, 𝑗 instead of 𝑌𝑖,𝑎 where 𝑎 is the binary representation of 𝑗 .

It can be easily verified that the implication graph𝐺𝑎 of the expansion exp(Ψ[𝑎]) is as shown in Fig. 1, where
a dashed edge

¬𝑄 𝑗

d is present if and only if 𝑎 falsifies the cube 𝑄 𝑗 . Indeed,𝜓1 states that the edge ¬𝑌1,1 → 𝑌1,1 is
present.𝜓2 states that the edges 𝑌2,𝑖 → 𝑌1,𝑖+1 and ¬𝑌1,𝑖+1 → ¬𝑌2,𝑖 are present for every 𝑖 ∈ [𝑚 − 1].𝜓3 states that
the edges 𝑌2,𝑚 → ¬𝑌1,1 and 𝑌1,1 → ¬𝑌2,𝑚 are present. Finally, 𝜓4 states that the dashed edges 𝑌1, 𝑗

¬𝑄 𝑗

d 𝑌2, 𝑗 and

𝑌1, 𝑗
¬𝑄 𝑗

d 𝑌2, 𝑗 are present if 𝑎𝑥 falsifies 𝑄 𝑗 , for every 𝑗 ∈ [𝑚]. This implies that 𝑎𝑥 falsifies all cubes in 𝜑 if and only
if there exists a cycle in 𝐺𝑎 . Since a cycle in 𝐺𝑎 (if exists) contains contradicting literals, 𝑎𝑥 falsifies all cubes in
𝜑 if and only if Ψ[𝑎] is not satisfiable. Since the assignment 𝑎 is arbitrary, 𝜑 is a tautology if and only if Ψ is
satisfiable. □

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

6:16 • Cheng, Fung, Jiang, Slivovsky & Tan

𝑌1,1 𝑌2,1

𝑌1,2 𝑌2,2

𝑌1,3 𝑌2,3

...
...

𝑌1,𝑚 𝑌2,𝑚

¬𝑌1,1 ¬𝑌2,1

¬𝑌1,2 ¬𝑌2,2

¬𝑌1,3 ¬𝑌2,3

...
...

¬𝑌1,𝑚 ¬𝑌2,𝑚

¬𝑄1

¬𝑄2

¬𝑄3

¬𝑄𝑚

¬𝑄1

¬𝑄2

¬𝑄3

¬𝑄𝑚

Fig. 1. The implication graph 𝐺𝑎 Each dashed edge
¬𝑄𝑖
d is present if and only if 𝑎𝑥 falsifies 𝑄𝑖 .

Next, we consider the complexity of sat(3-DQBFcnf). Note that 3-DQBFcnf subsumes both 3-DQBFdcnf and
2-DQBFcnf . Thus, sat(3-DQBFcnf) is is both NP-hard and coNP-hard. We improve these results by showing that
it is ΠP

2 -hard.

Theorem 6.3. sat(3-DQBFcnf) is ΠP
2 -hard.

Proof. Note that a Π2-QBF formula in 3-CNF is essentially a DQBFcnf where all variables share the common
dependency set of all universal variables, and every clause contains exactly three literals. By Lemma 4.1, it is
equisatisfiable to a 3-DQBFcnf . □

We next show that sat(4-DQBFcnf) is ΠP
4 -hard. To do this, we need a stronger version of Lemma 4.1 that allows

the compression of existential variables with different dependencies.

Lemma 6.4. Let 𝑙 ⩾ 0 be some constant, and Φ B ∀𝑧, ∃𝑥1 (𝐷1), . . . , ∃𝑥𝑛 (𝐷𝑛), ∃𝑦1 (𝐸1), . . . , 𝑦𝑘 (𝐸𝑘).
∧

𝑗∈[𝑚] (𝐶𝑥
𝑗 ∨

𝐶−𝑥
𝑗) be a (𝑛 + 𝑘)-DQBFcnf , where

• vars(𝐶−𝑥
𝑗) ∩ 𝑥 = ∅,

• vars(𝐶𝑥
𝑗) ⊆ 𝑥 , and

• 𝐶𝑥
𝑗 =

∨
𝑠∈[𝑛 𝑗] ℓ𝑗,𝑠 with 𝑛 𝑗 ⩽ 𝑙 .

Moreover, let 𝑆1, . . . , 𝑆𝑝 be subsets of 𝑧 such that each 𝐷𝑖 can be represented as the intersection of some subset of
{𝑆1, . . . , 𝑆𝑝 }, i.e., for each 𝑖 ∈ [𝑛], there exists some P𝑖 ⊆ {𝑆1, . . . , 𝑆𝑝 } such that 𝐷𝑖 =

⋂
𝑃∈P𝑖

𝑃 , and let 𝑆 =
⋃

𝑖∈[𝑝] 𝑆𝑖 .
Then, we can construct in logspace an equisatisfiable (𝑝 + 𝑘 + 𝑙)-DQBFcnf formula. Moreover, if 𝑆 = 𝑆𝑞 for some

𝑞 ∈ [𝑝], then we can construct an equisatisfiable (𝑝 + 𝑘 + 𝑙 − 1)-DQBFcnf formula.

Proof. We construct
Φ′ = ∀𝑧,∀𝑢1, . . . ,∀𝑢𝑙 , ∃𝑦1 (𝐸1), . . . , ∃𝑦𝑘 (𝐸𝑘), ∃𝑡1 (𝑆 ∪ 𝑢1), . . . , ∃𝑡𝑙 (𝑆 ∪ 𝑢𝑙), ∃𝑣1 (𝑆1 ∪ 𝑢1), . . . , ∃𝑣𝑝 (𝑆𝑝 ∪ 𝑢1). 𝜑 ′ ,

where each 𝑢𝑖 is of length ⌈log2 𝑛⌉ + 1, and 𝜑 ′ consists of clauses encoding
• ((𝑢1 = 𝑖) ∧ (𝑢𝑠+1 = 𝑖)) → (𝑡1 ↔ 𝑡𝑠+1) for 𝑖 ∈ [𝑛] and 𝑠 ∈ [𝑙 − 1],
• (𝑢1 = 𝑖) → (𝑡1 ↔ 𝑣𝑞) for 𝑖 ∈ [𝑛] and 𝑞 ∈ {𝑞 | 𝑆𝑞 ∈ P𝑖 }, and
• ∧

𝑠∈[𝑛 𝑗] (𝑢𝑠 = ind(ℓ𝑗,𝑠) → (𝐶−𝑥
𝑗 ∨∨

𝑠∈[𝑛 𝑗] (𝑡𝑠 ↔ sgn(ℓ𝑗,𝑠)) for 𝑗 ∈ [𝑚],

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:17

where ind(ℓ) denotes the index 𝑖 such that 𝑧𝑖 = var(ℓ) for a literal ℓ .
The construction is mostly the same as that for Lemma 4.1, except we now have 𝑝 additional variables 𝑣1, . . . , 𝑣𝑝 ,

and the corresponding constraints (𝑢1 = 𝑖) → (𝑡1 ↔ 𝑣𝑞) for 𝑖 ∈ [𝑛] and 𝑞 ∈ {𝑞 |𝐷𝑖 ⊆ 𝑆𝑞}. Without these, the
variables 𝑥 would be allowed to depend on the entirety of 𝑆 . Consider an existential variable 𝑥𝑖 . If 𝑆𝑞 ∈ P𝑖 , then
the variable 𝑣𝑞 ensures that the strategy of 𝑥𝑖 must be consistent across all assignments that are consistent on 𝑆𝑞 .
For any two assignments 𝑎𝑧 and 𝑎′𝑧 that are consistent on 𝐷𝑖 , there must be a sequence of assignments 𝑎𝑧0, . . . , 𝑎𝑧𝑝
such that

• 𝑎𝑧0 = 𝑎𝑧 ,
• 𝑎𝑧𝑝 = 𝑎′𝑧 ,
• 𝑎𝑧

𝑞−1 = 𝑎
𝑧
𝑞 if 𝑆𝑞 ∉ P𝑖 , and

• 𝑎𝑧
𝑞−1 and 𝑎𝑧𝑞 are consistent on 𝑆𝑞 if 𝑆𝑞 ∉ P𝑖 .

It follows that the strategy of 𝑥𝑖 must be consistent on 𝑎𝑧 and 𝑎′𝑧 through a series of constraints. Note that if
𝑆𝑞 = 𝑆 , then 𝑣𝑞 will be an exact copy of 𝑡1, and we can therefore omit it to obtain a (𝑝 + 𝑘 + 𝑙 − 1)-DQBFcnf .

The rest of the proof follows exactly the same as that for Lemma 4.1. □

A naïve extension of Lemma 4.1 will require 𝑙 copies of existential variables for each dependency, which is
too costly to obtain any useful results even when there are only two different dependencies. Instead, we encode
different dependency sets efficiently by representing them as intersections of a (small) family of sets.
We can now show the ΠP

4 -hardness of sat(4-DQBFcnf).

Theorem 6.5. sat(4-DQBFcnf) is ΠP
4 -hard.

Proof. Consider a Π4-QBF formula in 3-CNF
Φ = ∀𝑧1, ∃𝑥1,∀𝑧2, ∃𝑥2. 𝜑 .

Let 𝑆1 = 𝑧1 and 𝑆2 = 𝑧1 ∪ 𝑧2. We can apply Lemma 6.4 with 𝑘 = 0, 𝑙 = 3, 𝑝 = 2, and 𝑆2 is a maximum element in
{𝑆1, 𝑆2}. Thus, Φ is equisatisfiable to a 4-DQBFcnf . □

Finally, we provide the hardness results for sat(𝑘-DQBFcnf) with 𝑘 = 5 and 𝑘 ⩾ 6.

Theorem 6.6. sat(𝑘-DQBFcnf) is PSPACE-hard when 𝑘 = 5 and NEXP-complete when 𝑘 ⩾ 6.

Proof. Using Tseitin transformation (see Section 2.2), we can transform a 𝑘-DQBF formula Φ into an equisat-
isfiable (𝑘 + 𝑛)-DQBFcnf formula Φ′ by introducing 𝑛 = 𝑂 (|Φ|) fresh existential variables, such that

• each freshly introduced existential variable depends on all universal variables, and
• each clause in Φ′ has exactly three literals.

By applying Lemma 4.1 on Φ′, we can construct an equisatisfiable (𝑘 + 3)-DQBFcnf formula Φ′′.
Recall that sat(2-DQBF) and sat(3-DQBF) are PSPACE- and NEXP-complete, respectively (Fung and Tan

2023). Combining the above, we conclude that sat(5-DQBFcnf) is PSPACE-hard and sat(6-DQBFcnf) is NEXP-
complete. □

7 Conclusions and Future Work
While sat(𝑘-DQBFddnf) is as hard as sat(𝑘-DQBF), we observe a range of differing complexity results in the CNF
case. For the case of sat(𝑘-DQBFdcnf), we show that it is in fact as easy as 𝑘-SAT—exponentially easier than
sat(𝑘-DQBF). Generalising the results by Scholl et al. (2019), we also show that sat(DQBFdcnf) is NP-complete
and that sat(𝑘-DQBF𝛼cnf) has the same complexity as 𝑘-SAT for 𝛼 ∈ {d, de, dec, ds}. For the case of 𝑘-DQBFcnf ,
we show that it is only coNP-complete when 𝑘 = 2 (whereas sat(2-DQBF) is PSPACE-complete) and of the same
NEXP-complete complexity as sat(DQBF) when 𝑘 ⩾ 6. These results show that, when parametrising DQBF

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

6:18 • Cheng, Fung, Jiang, Slivovsky & Tan

with the number of existential variables, it is more natural to consider DNF as the normal form for the matrix,
analogous to how CNF is considered the standard form for SAT.

The exact complexity of sat(𝑘-DQBFcnf) is yet to be discovered for 𝑘 = 3, 4, and 5. In particular, the best-known
membership result is still that they are in NEXP. We leave this for future work.

Acknowledgments
This paper elaborates and strengthens the results announced in the conference paper (Cheng et al. 2025). We
thank the reviewers of SAT 2025 for their feedback on the initial version.
We would like to acknowledge the generous support of Royal Society International Exchange Grant no.

EC\R3\233183, the National Science and Technology Council of Taiwan under grant NSTC 111-2923-E-002-
013-MY3, and the NTU Center of Data Intelligence: Technologies, Applications, and Systems under grant
NTU-113L900903.

A Reproducibility Checklist for JAIR
Select the answers that apply to your research – one per item.

All articles:
(1) All claims investigated in this work are clearly stated. [yes]
(2) Clear explanations are given how the work reported substantiates the claims. [yes]
(3) Limitations or technical assumptions are stated clearly and explicitly. [yes]
(4) Conceptual outlines and/or pseudo-code descriptions of the AI methods introduced in this work are

provided, and important implementation details are discussed. [yes]
(5) Motivation is provided for all design choices, including algorithms, implementation choices, parameters,

data sets and experimental protocols beyond metrics. [yes]

Articles containing theoretical contributions:
Does this paper make theoretical contributions? [yes]
If yes, please complete the list below.
(1) All assumptions and restrictions are stated clearly and formally. [yes]
(2) All novel claims are stated formally (e.g., in theorem statements). [yes]
(3) Proofs of all non-trivial claims are provided in sufficient detail to permit verification by readers with a

reasonable degree of expertise (e.g., that expected from a PhD candidate in the same area of AI). [yes]
(4) Complex formalism, such as definitions or proofs, is motivated and explained clearly. [yes]
(5) The use of mathematical notation and formalism serves the purpose of enhancing clarity and precision;

gratuitous use of mathematical formalism (i.e., use that does not enhance clarity or precision) is avoided.
[yes]

(6) Appropriate citations are given for all non-trivial theoretical tools and techniques. [yes]

Articles reporting on computational experiments:
Does this paper include computational experiments? [no]
If yes, please complete the list below.
(1) All source code required for conducting experiments is included in an online appendix or will be made

publicly available upon publication of the paper. The online appendix follows best practices for source
code readability and documentation as well as for long-term accessibility. [yes/partially/no]

(2) The source code comes with a license that allows free usage for reproducibility purposes. [yes/partially/no]

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

Fine-Grained Complexity Analysis of DependencyQuantified Boolean Formulas • 6:19

(3) The source code comeswith a license that allows free usage for research purposes in general. [yes/partially/no]
(4) Raw, unaggregated data from all experiments is included in an online appendix or will be made pub-

licly available upon publication of the paper. The online appendix follows best practices for long-term
accessibility. [yes/partially/no]

(5) The unaggregated data comeswith a license that allows free usage for reproducibility purposes. [yes/partially/no]
(6) The unaggregated data comes with a license that allows free usage for research purposes in general.

[yes/partially/no]
(7) If an algorithm depends on randomness, then the method used for generating random numbers and for

setting seeds is described in a way sufficient to allow replication of results. [yes/partially/no/NA]
(8) The execution environment for experiments, the computing infrastructure (hardware and software) used

for running them, is described, including GPU/CPU makes and models; amount of memory (cache and
RAM); make and version of operating system; names and versions of relevant software libraries and
frameworks. [yes/partially/no]

(9) The evaluation metrics used in experiments are clearly explained and their choice is explicitly motivated.
[yes/partially/no]

(10) The number of algorithm runs used to compute each result is reported. [yes/no]
(11) Reported results have not been “cherry-picked” by silently ignoring unsuccessful or unsatisfactory

experiments. [yes/partially/no]
(12) Analysis of results goes beyond single-dimensional summaries of performance (e.g., average, median) to

include measures of variation, confidence, or other distributional information. [yes/no]
(13) All (hyper-) parameter settings for the algorithms/methods used in experiments have been reported, along

with the rationale or method for determining them. [yes/partially/no/NA]
(14) The number and range of (hyper-) parameter settings explored prior to conducting final experiments have

been indicated, along with the effort spent on (hyper-) parameter optimisation. [yes/partially/no/NA]
(15) Appropriately chosen statistical hypothesis tests are used to establish statistical significance in the presence

of noise effects. [yes/partially/no/NA]

Articles using data sets:
Does this work rely on one or more data sets (possibly obtained from a benchmark generator or similar software
artifact)? [no]
If yes, please complete the list below.

(1) All newly introduced data sets are included in an online appendix or will be made publicly available upon
publication of the paper. The online appendix follows best practices for long-term accessibility with a
license that allows free usage for research purposes. [yes/partially/no/NA]

(2) The newly introduced data set comes with a license that allows free usage for reproducibility purposes.
[yes/partially/no]

(3) The newly introduced data set comes with a license that allows free usage for research purposes in general.
[yes/partially/no]

(4) All data sets drawn from the literature or other public sources (potentially including authors’ own
previously published work) are accompanied by appropriate citations. [yes/no/NA]

(5) All data sets drawn from the existing literature (potentially including authors’ own previously published
work) are publicly available. [yes/partially/no/NA]

(6) All new data sets and data sets that are not publicly available are described in detail, including relevant
statistics, the data collection process and annotation process if relevant. [yes/partially/no/NA]

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

6:20 • Cheng, Fung, Jiang, Slivovsky & Tan

(7) All methods used for preprocessing, augmenting, batching or splitting data sets (e.g., in the context of
hold-out or cross-validation) are described in detail. [yes/partially/no/NA]

Explanations on any of the answers above (optional):
[Text here; please keep this brief.]

Journal of Artificial Intelligence Research, Vol. 4, Article 6. Publication date: August 2025.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 DQBF and Its Subclasses
	2.2 Tseitin Transformation
	2.3 Manipulation of DQBF_cnf
	2.4 Universal Expansion of k-DQBF

	3 Complexity of sat(k-DQBF^d_dnf)
	4 A Useful Lemma
	5 Complexity of sat(k-DQBF^α_cnf)
	5.1 Universal Expansion of DQBF^d_cnf
	5.2 2-DQBF^d_cnf
	5.3 k-DQBF^d_cnf: k ≥ 3 and Non-Constant k
	5.4 sat(k-DQBF^α_cnf): Different Dependency Structure

	6 Complexity of sat(k-DQBF_cnf)
	7 Conclusions and Future Work
	Acknowledgments
	A Reproducibility Checklist for JAIR

