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Abstract

Dependency Quantified Boolean Formulas (DQBF) general-
ize QBF by explicitly specifying which universal variables
each existential variable depends on, instead of relying on a
linear quantifier order. The satisfiability problem of DQBF is
NEXP-complete, and many hard problems can be succinctly
encoded as DQBF. Recent work has revealed a strong anal-
ogy between DQBF and SAT: k-DQBF (with k£ existential
variables) is a succinct form of k-SAT, and satisfiability is
NEXP-complete for 3-DQBF but PSPACE-complete for 2-
DQBF, mirroring the complexity gap between 3-SAT (NP-
complete) and 2-SAT (NL-complete).

Motivated by this analogy, we study the model counting prob-
lem for DQBF, denoted #DQBF. Our main theoretical re-
sult is that #2-DQBF is #EXP-complete, where #EXP is
the exponential-time analogue of #P. This parallels Valiant’s
classical theorem stating that #2-SAT is #P-complete. As
a direct application, we show that first-order model counting
(FOMC) remains #EXP-complete even when restricted to a
PSPACE-decidable fragment of first-order logic and domain
size two.

Building on recent successes in reducing 2-DQBF satisfia-
bility to symbolic model checking, we develop a dedicated
2-DQBF model counter. Using a diverse set of crafted in-
stances, we experimentally evaluated it against a baseline
that expands 2-DQBF formulas into propositional formulas
and applies propositional model counting. While the base-
line worked well when each existential variable depends on
few variables, our implementation scaled significantly better
to larger dependency sets.

Code and benchmarks —
https://github.com/Sat-DQBF/sharp2DQR

1 Introduction

There has been tremendous progress in SAT solving over
the past few decades, enabling widespread applications
across many areas of computing, including reasoning tasks
in Al (Biere et al. 2009, 2023; Fichte et al. 2023). How-
ever, certain problems in hardware verification and syn-
thesis are unlikely to admit succinct encodings in propo-
sitional logic, prompting research into automated reason-
ing in more expressive logics (Jiang 2009; Balabanov and
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Jiang 2015; Scholl and Becker 2001; Gitina et al. 2013a;
Bloem, Konighofer, and Seidl 2014; Chatterjee et al. 2013;
Kuehlmann et al. 2002; Ge-Ernst et al. 2022).

A natural candidate for such applications is the logic of
Dependency Quantified Boolean Formulas (DQBF), an ex-
tension of Quantified Boolean Formulas (QBF) with Henkin
quantifiers that annotate each existential variable with a set
of universal variables it depends on (Balabanov, Chiang, and
Jiang 2014). A model of a DQBF consists of Skolem func-
tions that map each existential variable to a truth value based
on an assignment to its universal dependencies. The fine-
grained control over variable dependencies allows DQBF
to naturally express problems such as constrained program
synthesis (Golia, Roy, and Meel 2021) and equivalence
checking of partially specified circuits (Gitina et al. 2013b).
This has led to active research over the past decade and the
development of several solvers (Frohlich et al. 2014; Ten-
trup and Rabe 2019; Gitina et al. 2015; Wimmer et al. 2017;
Sic and Strejcek 2021; Reichl, Slivovsky, and Szeider 2021;
Reichl and Slivovsky 2022; Golia, Roy, and Meel 2023), as
well as the inclusion of a dedicated DQBF track in recent
QBEF evaluations (Pulina and Seidl 2019).

While satisfiability is a central question in DQBF, many
synthesis and verification tasks benefit from knowing how
many solutions exist. Counting models can help debug and
refine specifications: for instance, an unexpectedly large
number of Skolem functions may suggest that the specifica-
tion admits unintended behaviour. Model counters have been
developed for QBF with one quantifier alternation (Plank,
Mohle, and Seidl 2024) as well as Boolean synthesis (Shaw,
Juba, and Meel 2024), and more recently, for general
QBF (Capelli et al. 2024).

In this paper, we consider the model counting problem
for DQBF, denoted #DQBF. This is a formidable prob-
lem, since even deciding whether a DQBF has a model is
NEXP-complete (Peterson and Reif 1979; Chen et al. 2022;
Cheng et al. 2025). Moreover, because DQBF allows arbi-
trary and potentially incomparable dependency sets, existing
techniques for #QBF that rely on a linear order of quanti-
fiers cannot be applied.

To support the intuition that #DQBF is a particularly dif-
ficult problem, we first prove that even the model count-
ing problem for DQBF with just two existential variables,
denoted #2-DQBF, is #EXP-complete. This is despite



the fact that satisfiability of 2-DQBF is “only” PSPACE-
complete (Fung and Tan 2023). Our proof builds on a re-
cent result on 2-DNF model counting (Bannach et al. 2025)
and uses the close correspondence between k-DQBF and
k-SAT (Fung and Tan 2023). This hardness result is anal-
ogous to the well-known hardness of #2-SAT: while 2-SAT
is solvable in polynomial time, counting its models is #P-
complete (Valiant 1979a,b).

Note that functions in #EXP may output doubly expo-
nential numbers, which require exponentially many bits.
Thus, the standard polynomial time Turing reductions for es-
tablishing #P-hardness, as in the case of #2-SAT in (Valiant
1979a,b), is not appropriate for the class #EXP. To circum-
vent this issue, we introduce a new kind of polynomial-
time reduction, called a poly-monious reduction (see Sec-
tion 2 for the definition), which lies between classical par-
simonious reductions and polynomial-time Turing reduc-
tions. Under poly-monious reductions, #2-SAT is still #P-
complete (Bannach et al. 2025).

Another notion of hardness for counting problem requires
the reduction to be parsimonious (Ladner 1989). However,
since 2-SAT is NL-complete, #2-SAT is not #P-hard under
parsimonious reduction, unless NL = NP. We believe that
the notion of poly-monious reduction is well-suited for es-
tablishing #EXP-hardness, as it strikes a balance between
parsimonious reductions and polynomial time Turing reduc-
tions in terms of strength.

As an application of the hardness of #2-DQBF, we
show that the combined complexity of first-order model
counting (FOMC)—a central problem in statistical rela-
tional Al—is #EXP-complete (over varying vocabulary).
FOMC is defined as given FO sentence ¥ and a number
N in unary, compute the number of models of ¥ with do-
main {1,..., N}. The combined complexity of FOMC is
the complexity measured in terms of both the sentence ¥
and the number N. While the #EXP-hardness of FOMC
can already be inferred from classical results in logic (Lewis
1980),! we obtain a stronger result: FOMC is #EXP-hard
even when the domain size is restricted to 2 and the base
logic is a PSPACE-decidable fragment of FO.? This may
help explain why scalable FO model counters have remained
elusive despite intensive research efforts for over a decade.

Motivated by our result that #DQBF remains hard even
for just two existential variables, we explore the viabil-
ity of solving #2-DQBF in practice. Due to the double-
exponential number of possible Skolem functions, direct
enumeration is infeasible. Similarly, expanding a DQBF into
a propositional formula leads to an exponential blow-up,
rendering state-of-the-art #SAT solvers impractical.

Instead, we build on a recent success in reducing 2-DQBF
satisfiability to model checking (Fung et al. 2024) and inter-
pret 2-DQBF instances as succinctly represented implica-

'A close inspection of the proof in (Lewis 1980) shows poly-
monious reductions from languages in NEXP to the Bernays-
Schonfinkel-Ramsey fragment of FO, whose satisfiability problem
is known to be NEXP-complete.

YIn general, the satisfiability problem for FO is undecid-
able (Trakhtenbrot 1950).

tion graphs. Based on this idea, we propose a model count-
ing algorithm that proceeds in two main phases. In the first
phase, it constructs a Binary Decision Diagram (BDD) rep-
resenting reachability in the implication graph. This phase
benefits from mature tools developed by the formal meth-
ods community, including the IC3 algorithm, the CUDD
package for BDD manipulation, and ABC’s implementa-
tion of exact reachability (Bradley and Manna 2007; Bradley
2011; Eén, Mishchenko, and Brayton 2011; Somenzi 2009;
Brayton and Mishchenko 2010). In the second phase,
our algorithm counts Skolem functions by analysing each
weakly connected component separately—similar in spirit
to component-based decomposition in propositional model
counters (Gomes, Sabharwal, and Selman 2021). Within
each component, it suffices to enumerate Skolem functions
for just one existential variable. We further restrict attention
to partial Skolem functions defined only on the variables lo-
cal to each component. This avoids explicit enumeration and

enables us to handle instances with up to 22" Skolem func-
tions. The techniques used in this phase combine new ideas
with existing methods (Reichl, Slivovsky, and Szeider 2021;
Fung et al. 2024).

We evaluate our implementation on a diverse set of crafted
benchmarks. As a baseline, we use a pipeline that expands
a DQBF to a propositional formula and applies the #SAT
solver Ganak (Sharma et al. 2019). While Ganak performs
well on some smaller instances, its reliance on explicit ex-
pansion becomes a bottleneck as dependency sets grow. In
contrast, our solver scales gracefully and consistently out-
performs the baseline on DQBF with larger dependency sets.

We also performed experiments with state-of-the-art FO
model counters. While our approach can only be applied to
FOMC with binary relations, this is enough to encode prob-
lems such as counting the number of independent sets in
highly symmetric graphs. In some cases, our implementation
was able to handle instances with more than 227 solutions,
far beyond the practical reach of current FO model counters.
This indicates that an analogue of our component decompo-
sition technique for #2-DQBF may improve FO model coun-
ters in restricted, highly symmetric settings.

Related work. FOMC is often studied in data complex-
ity setting, i.e., the FO sentence is fixed and the complexity
is measured only in terms of the domain size. It is shown
in (Beame et al. 2015) that there is a three-variable sentence
such that the data complexity of its FOMC is #P;-complete.
For two-variable fragment, the data complexity drops to
PTIME (Té6th and Kuzelka 2024; van Bremen and Kuzelka
2023; Beame et al. 2015). The combined complexity is #P-
complete, but assuming that the vocabulary is fixed (Beame
et al. 2015). A tightly related problem to FOMC is query
evaluation on probabilistic database, whose combined com-
plexity is #P-complete (Dalvi and Suciu 2004), but again,
under the assumption of fixed vocabulary.

The notion of combined and data complexity was intro-
duced in (Vardi 1982) in the context of database query eval-
uation, to better understand which component (the query/the
data/both) contributes more to the complexity of query eval-
uation. Since then, as hinted in the previous paragraph, it



has become the standard notion for establishing fine-grained
complexity results for problems involving a few parameters.

2 Preliminaries

Notation. Let B = {1, T}, where L and T denote the
Boolean false and true values. A literal is either a Boolean
variable or its negation. We write | to denote the literal =
and 2 to denote —x. The sign of the literal 2° is the bit b.

We use the symbols a, b, c to denote elements in B, and the
bar version @, b, ¢ to denote strings in B* with |a| denoting
the length of a. Boolean variables are denoted by x, y, 2, u, v
variables with |Z| denoting the length of Z. We insist that
in a vector Z there is no variable occurring more than once.
Abusing the notation, we write Z C Z to denote that every
variable in Z also occurs in Z.

As usual, p(Z) denotes a Boolean formula with variables
Z. When it is clear from the context, we simply write ¢. For
zZ C z and a € B* where |a] = |Z|, p[Z/a] denotes the
formula obtained from ¢ by assigning the values in a to Z.
Obviously, if Z = Z, then ¢[Z/a] is either L or T.

Poly-monious reductions. Let X be a finite alphabet. A
poly-monious reduction from a function F' : ¥* — N to
another function G : ¥* — N is a polynomial time de-
terministic Turing machine M together with a polynomial
p(s1, - - ., s¢) such that on input word w, M outputs ¢ strings
vy, ..., where F(w) = p(G(vy1),...,G(vy)).

Note that poly-monious reductions are a slight gener-
alization of the classical parsimonious and c-monious re-
ductions, but weaker than polynomial time Turing reduc-
tions. Parsimonious reduction is a poly-monious reduction
with the identity polynomial p(s) = s. The c¢-monious
reduction (Bannach et al. 2025) is a poly-monious reduc-
tion with the polynomial p(s) = c¢s. When restricted to
functions in #P, a poly-monious reduction with polynomial
p(s1,...,st) is a special case of polynomial time Turing re-
duction in the sense that the number of calls to the oracle is
fixed to ¢, which does not depend on the input word.

#EXP-complete functions. A function F': ¥* — Nisin
#EXP, if there is a non-deterministic exponential time Tur-
ing machine M such that for every word w € ¥*, F(w) is
the number of accepting runs of M on w. It is #EXP-hard,
if for every function G € #EXP, there is a poly-monious
reduction from G to F'. Finally, it is #EXP-complete, if it is
in #EXP and #EXP-hard.

Dependency Quantified Boolean Formulas (DQBF). A
dependency quantified Boolean formula (DQBF) in prenex
normal form is a formula of the form:

U = Vz Iyi(z1) - Jyp(Zk) ¥ M

where T = (x1,...,2,), each Z; C Z and 1, called the
matrix, is a quantifier-free Boolean formula using variables
in zU {y1,...,yrx}t. We call T the universal variables,
Y1,-- ., Yk the existential variables, and each Zz; the depen-
dency set of y;. A k-DQBF is a DQBF with k existential
variables. For convenience, we sometimes write Jy;(Z;) as
Jy;(I;) where I; is the set of indices of the variables in Z;.

A DQBF W as in (1) is satisfiable if there is a tuple
(f1,---, fr), called Skolem functions, such that, for every
1 <4 <k, f; is a formula using only variables in z;, and by
replacing each y; with f;, the matrix i) becomes a tautology.
We call the tuple (f1,. .., fx) a solution or model of ¥ and
write (f1,..., fx) E V. We refer to ¥ as a uniform DOBF
if for every model (f1,...,fx) E ¥, f1,..., fx represent
the same Boolean function, i.e., |Z1| = --- = |Zx| = m and
forevery a € B™, fi1(a) = --- = fr(a). We write #7 to
denote the number of Skolem functions of V.

The model counting problem for DQBF, denoted
#DQBEF, is to compute #W¥ for a given DQBF W. Its re-
striction to k-DQBF is denoted by #k-DQBFE.

DQBF expansion. We first recall the definition of the ex-
pansion of a DQBF from (Fung and Tan 2023), which shows
that a DQBF represents an exponentially large CNF formula.
We will need an additional notation. For z C Z and a € %I%!,
we write d‘j 2o denote the projection of a to the compo-
nents in z according to the order of the variables in z. For
example, if £ = (z1,...,z5) and Z = (z1, z2,z5), then
LJ.TJ.T’ME is L 1T, ie., the projection of LL T LT to

its 15¢, 24 and 5t bits.

Let ¥ be as in Eq. (1). For each 1 < ¢ < k and for each
¢ € BI%l, let X; ; be a variable. For each (@, b) € B™ x BF,
where @ = (aj,...,a,) and b = (by,...,by), define the
clause Ca,B = X;gi VeV X];l(i’z where ¢; = d|ﬂ2i, for
each 1 < i < k. The expansion of ¥, denoted by exp(¥), is
the following k£-CNF formula.

exp(¥) = A Cap 2)
(a,b) st ¥[(z,9)/(a;b))=L
It is known that W is satisfiable if and only if its expansion
exp(W) is satisfiable (cf. Fung and Tan 2023). More pre-
cisely, a solution (f1, ..., fx) |E © corresponds uniquely to
a satisfying assignment of exp(®), where X; ; = f;(¢) for
every 1 <i < kandc e Bl%l,

3 Complexity of #DQBF
In this section, we will analyse the complexity of #DQBF,
starting with #3-DQBF. It is straightforward that #3-DQBF
is in #EXP. It is #EXP-hard since every language in NEXP
can be reduced parsimoniously in polynomial time to 3-
DQBF (Fung and Tan 2023). This gives us the following
theorem.

Theorem 1. #3-DOBF is #EXP-complete.

Theorem 1 is not surprising, given that the satisfiabil-
ity problem for 3-DQBF is already NEXP-complete. We
will strengthen it by showing that #EXP-hardness already
holds for 2-DQBF, whose satisfiability problem is PSPACE-
complete.

Before we can prove this, we need to introduce some fur-
ther terminology. First, we recall the notion of succinct rep-
resentation of graph introduced in (Galperin and Wigder-
son 1983). In such a representation, instead of being given
the list of edges in a graph, we are given a boolean cir-
cuit C(Z, y), where T, § are vectors of Boolean variables of



length n. The circuit C' represents a graph G where the set
of vertices is B" and there is an edge oriented from @ to b,
denoted @ — b, iff C(a,b) =T

We will interpret a 2-CNF formula F' as a directed graph,
called the implication graph of F, where each clause (¢; V
¢5) represents two edges (—¢; — o) and (=l — ¢1). If n
is the number of variables in I, each literal can be encoded
as a binary string aga - - - Qlogn € Bt where ay is the
sign and ay - - - aog n 1S the name of the variable.

Finally, we need the notion of projection introduced
in (Skyum and Valiant 1985). Intuitively, a projection is a
special kind of polynomial time reduction where each bit j
in the output is determined either by the length of the input
or by bit ¢ in the input where the index ¢ can be computed
efficiently from index j and the length of the input.

We recall the following lemma from (Fung and Tan 2023),
which is inspired by the result in (Papadimitriou and Yan-
nakakis 1986).

Lemma 2. (Fung and Tan 2023) Suppose there is a pro-
Jjection A that takes as input a CNF formula and outputs a
graph. Then, there is a polynomial time algorithm that trans-
forms a DOBF instance V to a circuit C' that succinctly rep-
resents the graph A(exp(¥)).

Using Lemma 2, we can prove the following.

Lemma 3. Suppose there is a projection A that takes as
input a CNF formula and outputs a 2-CNF formula. Then,
there is a polynomial time algorithm B that transforms a
DOQBF instance V to a 2-DQBF instance ® such that #® =

#A(exp(W)).

Proof. Viewing 2-CNF formula as a graph and apply-
ing Lemma 2, there is a polynomial time algorithm A* that
transforms a DQBF W to a circuit C that succinctly repre-
sents the implication graph of A(exp(¥)).

The desired algorithm 5B works as follows. Let U be
the input DQBF. First, run A* on ¥ to obtain the circuit
C(u,z,u',z"), where Z,Z’ encode the names of variables
and u, u’ represent the signs of literals. Then, output the 2-
DQBF @ := VzVZ’' Jy1(Z)Jy2(T') o A 3, where

a === (y =1p)

r=2x
8= /\ Cb,z,b,7) & (4 — b))
bb' e

Intuitively, « states that ® is a uniform DQBF and S states
that the implication graph of the expansion must have the
same edges as G¢.

We claim that #® = #.A(exp(V)), i.e., #®P is precisely
the number of solutions of the 2-CNF formula represented
by the circuit C. By the definition of 8, (b,a) — (V/,a’)
is an edge in the graph Gc iff a clause X?, — X%, is
in exp(®). Since « states that Skolem functions for y1, ya
must be the same, the indices 1 and 2 in the literals X {’ 5 and
X S:a, can be dropped. It is equivalent to saying that (b, a) —
(V/,@’) is an edge in the graph G iff a clause X} ; — Xf:a,
is in exp(®). Therefore, #® = #A(exp(¥)). O

Lemma 4. There is a polynomial-time reduction that trans-
forms a DQBF VU into two 2-DQBFs &1 and ®s such that

#Y = 7#P1 — 7#Po.

Proof. Tt is shown in (Bannach et al. 2025) that there is a
polynomial-time reduction that takes as input a CNF for-
mula F' and outputs two 2-CNF formulas F} and F, such
that #F = #F, — #F5. We observe that their reduction is
in fact a projection. Using Lemma 3, we obtain the desired
reduction. O

The proof of Lemma 4 is non-constructive. We can
strengthen it by giving an explicit reduction that runs in al-
most linear time, as stated in Lemma 5. The run time is
quadratic in the number of existential variables and linear
in the length of the matrix.

Lemma 5. There is a reduction that transforms a DOBF ¥
into two 2-DQBF ®1 and ®4 such that #V = #®1 — #P,.
The reduction runs in time O(k?|¢)|), where k is the number
of existential variables in V and v is the matrix of V.

Using Lemma 4 or Lemma 5, we obtain the following the-
orem.

Theorem 6. #2-DQOBF is #EXP-complete.

We can also show that every k-DQBF can be reduced par-
simoniously to uniform k-DQBF, which gives us the follow-
ing corollary.

Corollary 7. For every k > 2, #k-DOBF is #EXP-
complete, even when restricted to uniform k-DQBF.

4 First-order Model Counting (FOMC)

In this section, we show a tight connection between #DQBF
and FOMC. Recall that FOMC is defined as given FO sen-
tence ¥ and a number N in unary, compute the number
of models of ¥ with domain {1,...,N}. We denote by
FOMCy,;, when the number N is given in binary.

It is implicit in (Chen et al. 2022) that FOMCy,, can be
reduced to #DQBF and that the reduction is parsimonious.
We will describe the idea here by an example. Consider the
well known smoker-friend example for Markov Logic Net-
works (Richardson and Domingos 2006):

U :=VYu stress(u) — smoke(u)
A YuVv friend(u,v) A smoke(u) — smoke(v)

For every n, we will show to construct a DQBF &,, such that
#®,, is exactly the number of models of ¥ of size 2™.

The idea is to represent each of the predicates stress,
smoke and friend with a Skolem function. We have
2n universal variables Z,,Zs in ®,. The first block
of n variables Z; corresponds to w and the second
block zy corresponds to w. It has 4 existential vari-
ables, y1, Y2, Y3, Ya, corresponding to 4 atoms stress(u),
smoke(u), friend(u,v) and smoke(v). The dependency
sets are T1, T1, 1 U T2 and X2, respectively. The matrix
of ®,, is obtained by replacing each atom in ¥ with its cor-
responding existential variable. Formally,

®,, =V VZy Jy1(Z1)3y2(Z1)Tys(Z1, T2)Iya(T2) &,



where

d=1 = y2) ANz Ay2 = ya) AN (T1 = T2 = Y2 = ya) -

The first two conjuncts correspond to the quantifier-free
parts in W. The last conjunct states that yo and y4 must be
the same function, since they are intended to represent the
same predicate smoke. It is not difficult to show that #®,,
is precisely the number of models of ¥ with size 2™.

Next, we show that FOMC is already hard even when the
domain size is fixed to 2.

Theorem 8. FOMC is #EXP-hard even when the domain
size is fixed to 2.

Proof. The reduction is from uniform 2-DQBF, which is
#EXP-hard, by Corollary 7. We fix a uniform 2-DQBF
& = VzIy (I)Iy2(J)¢p, where T = (21,...,25), I =
{i1,...,im} and J = {j1,...,Jm}. Let S be a predicate
symbol with arity m and U be a unary predicate. Define the
FO sentence ¥ := JugIuqVoy - - - Yo, Ulug) AU (ug) A1,
where 1) is the formula obtained from ¢ by replacing: (i)
each z; in ¢ with U(v;) for every 1 < ¢ < n; and (ii) y;
and yo with S(v;,,...,v;,) and S(v;,,...,v;,, ), respec-
tively. The intention is that the Boolean values T and L are
represented with membership in the predicate U. A Skolem
function f : B™ — B is represented by the relation S. We
can show that #® is half the number of models of ¥ with
domain {1, 2}. O

We can show that the logic required for #EXP-hardness
has satisfiability problem decidable in PSPACE, which gives
us the following corollary.

Corollary 9. There is a fragment L of FO of which the satis-
fiability problem is in PSPACE, but its corresponding FOMC
is #EXP-complete even when the domain size is restricted
10 2.

S Algorithm for #2-DQBF

In this section, we present an algorithm for #2-DQBF that
builds on recent advances in 2-DQBF satisfiability checking
using symbolic reachability (Fung et al. 2024). The key idea
is to interpret the matrix of a 2-DQBF as a succinct encoding
of the implication graph induced by its expansion. Our algo-
rithm symbolically decomposes this graph into its weakly
connected components and computes the model count by
processing each component independently.

We fix the input 2-DQBF @ := VZ 3y, (z1)Jy2(Z2) ¢. In-
stead of computing # & directly, we will compute # exp(®P).
There is a difference because a variable X; : may not even
occur in exp(®), indicating that the Skolem function of y; is
completely unconstrained at assignment ¢. We call a variable
X z a support variable if it appears in exp(®); otherwise, it
is called non-support. Since non-support variables can be as-
signed arbitrarily, it is sufficient to compute the number of
solutions that assign non-support variables to a fixed value,
say, L. We call such solutions essential solutions.

Counting non-support variables. #® can be recovered
from the number of essential solutions by multiplying it with
2™, where m is the number of non-support variables. The set
of support/non-support variables can be characterised with
Boolean formulas as follows.
Lemma 10. Ler S = {¢ : —p[z1/7 is satisfiable} and
Sy = {¢: ~[Zz2/7] is satisfiable}. The set of support vari-
ables in exp(®) is {X1z: ¢ € Si}U{Xo;: ¢ € Sa}
Moreover, the number of support and non-support variables
is |S1| 4 |Sa| and (21711 — | Sy |) + (2172 — |Ss)), respectively.
Given a BDD for the negated matrix -, Lemma 10 can
be used to efficiently compute the number of support vari-
ables |S;| by projecting out variables not in Z; and counting
satisfying assignments.

Overview of the algorithm. In the following, let G be

the implication graph of exp(®). Let G be the undirected
graph obtained from G¢ by ignoring the edge orientation
and adding an edge between a literal and its negation, for

every literal in exp(®). The connected components of Gg
correspond to a partition of the clauses in exp(®P) where no
two components share common variables.

High-level pseudocode is shown as Algorithm 1. First, us-
ing the reduction in (Fung et al. 2024), we convert ® to a
transition system (I, T'), where [ is the formula for the initial
states and 7' is the formula for the transition relation, a brief
summary of this transformation can be found in the supple-
mentary material. From (I, T), we can deduce whether ® is
satisfiable by constructing a formula ¢y, that represents the
transitive closure of G4 via BDD-based reachability. If it is
not satisfiable, the algorithm immediately returns 0.

Now, suppose P is satisfiable. From ¢y,., we can also con-
struct the formula for G¢. Algorithm 1 iterates through ev-
ery connected component C' in G'¢ that contains only the
support variables. In each iteration, it computes N¢, the
number of assignments on the variables in C' that respect the
implications in C'. For example, if there is an edge {1 — ¢
in G, when /4 is assigned to T, /> must also be assigned
to T. If there are k connected components Cy, Co, ..., Cy
(that contains only support variables), then the number of
essential solutions is the product [ [, -, -, N¢,, since no two
components share the same variable.

Counting over a component. This is the most technical
part of the algorithm. We start with the following lemma on
efficient model counting for 1-DQBF.

Lemma 11. Ler Y := Va3y(0) ¢ be a satisfiable 1-DQBF.

» The number of Skolem functions for Y is 2™, where m =
21°0 — {& : ~p[v/d] is satisfiable}|.
e In particular, for a set S C BI?, the number of Skolem

Sunctions for Y that differ on S is 2™, where m = |S| —

{¢: —p[v/e] A (€ € S) is satisfiable}|.

Lemma 11 tells us that if we have a candidate Skolem
function f for y;, by substituting y; with f, we obtain a
1-DQBF instance ¢’ of which the number of Skolem func-
tions restricted to a component can be computed efficiently
via Lemma 11. We perform this for every candidate Skolem
function for y; to compute the number N¢.



Algorithm 1: Count the number of essential solutions for ®.

Algorithm 2: Counting N¢

1: Transform ® to a symbolic reachability instance (I,7") using
the transformation in (Fung et al. 2024).

: if @ is unsatisfiable then

return 0

. R < the set of all support variables.

N+ 1.

: while R # 0 do

Pick an arbitrary variable X;  from R.

C <+ the connected component in G¢ that contain X z.

N¢ < the number of assignments on the variables in C

that respect the implications in C.

10: Remove all the variables in C' from R.

11: N < N X N¢.

12: return N.

R AR A

The main challenge is to enumerate all possible Skolem
functions for y;. To do so, we combine the candidate Skolem
function enumeration technique in (Reichl, Slivovsky, and
Szeider 2021) and the Skolem function extraction in (Fung
et al. 2024). Suppose we already have a list of Skolem func-
tions ' = {fM) ..., f®)} for y;, where each f(*) is given
as a Boolean formula. To find a Skolem function differ-
ent from all functions in this list, it must differ from each
f (?) at some ;. Let A be a Boolean formula, over variables
U1, ..., 0t Where each |U;| = |z, maintained throughout the
enumeration process. We will use A to represent the assign-
ments we can choose to differ from each f(9). The intuition
is that if M is a satisfying assignment for A, then we want
to find a function f with f(M(;)) = = (M(;)) for every
1< <t

How can we construct the Boolean formula that defines
the function f? Here we employ the technique from (Fung
et al. 2024). First, we “force” the variable X y(5,) to be as-

signed with — () (M(;)) by adding the edge

£ () O (u(3:))
L) L)

into the transition relation 7', for every 1 < ¢ < t. We then
check whether in the transition relation 7" there is a cycle that
contains contradicting literals. If there is such a cycle, we
move to the next satisfying assignment of A by “blocking”
the assignment M in A. If there is no such a cycle, we extract
the function f for y; by employing the technique from (Fung
et al. 2024), add f into F', and update A by conjoining it
with C1 (21 /0¢+1], where U441 are fresh variables, and C] is
a Boolean formula extracted from C' that specifies only the
literals associated with y;.

Without additional constraints, we would enumerate
many satisfying assignments M of A which do not lead to
a Skolem function. For instance, if M(7;) = M(7;) = a, but
fi(a) # f;(a), there clearly is no function f;11 such that

both fi+1(a) # fi(a) and fi41(a) # f;(@). Such cases, and
many more, can be excluded by conjoining A with

LD (g pors
/\ —Ptr (X1’£t+1 ( t+1)7X1,5j( J)> ) 3)
1<i<t

Recall that ¢y, is a formula that represents the edges of
the transitive closure of the implication graph. The formula

Let Cy, C2 be the literals in C' associated with y1, y2, resp.
F,An+0,T,0;
T« T > T is the transition relation constructed from ®.
while A is satisfiable do
Let M be a satisfying assignment of A
> Force the candidate to be different from the previous ones
T'" <+ T' N FORCEASSIGNMENT(M, F')
> Check if such assignments leads to no Skolem functions
7 E’ + COMPUTEREACHABLE(E,T")
8:  if CHECKBADCYCLE(E’) then
9: A < A N BLOCKASSIGNMENT(M)
0 continue
> Count the number of Skolem functions and update A
11: f + COMPUTEVALIDCANDIDATE(T")
12: n < n + COUNTIDQBFONCOMPONENT( f)
13: F+ FU{f}
14: UPDATE(A)

15: returnn

AR S

a

> n is the number N¢

L p@ (5 ) (5

Pir (X1 J;m ¢ ),X{ ;(j()z ' )) represents the formula ob-
tained by substituting the variable representing the two liter-

. . EOYSO) ) (5
als in ¢y, with X1,J;<i> < ), {’E(j()z ),

The intended meaning of Eq. (3) is as follows. The con-
junct C1[Zz1/Ts11] states that the place o where the next
Skolem function differs from f must be in component C;.

. @ () &) ()
Each conjunct =y, (XLJ;(I.) &) X{j(].()z )> ensures that
EOYEO) @z . ) )
the edge X, Jj<,.)(z ) X7 7 s not in the transi-
A l,z(J)

tive closure of Gs. Otherwise, if such an edge is present,
when we force X y(z,) to be -f@(M(7;)) and X1m(s;) to
be =) (M(7;)), we will find a bad cycle and there will be
no solutions.

We present the algorithm to compute N formally as Al-
gorithm 2. We first split C' into two sets C'; and C'5 that con-
tain the literals associated with y; and ys, respectively.

In Line 8 we force the assignment by adding into 7" the

edge X{;EISM)(U)) — X;DJ;E;()M(”")), forevery 1 < i < t.
In Line 9 we run the command reach from ABC to check
whether there is a cycle containing contradicting literals. If
there is such a cycle, the assignment M is blocked in Line 11.
In Line 13 we extract a Skolem function using the technique
from (Fung et al. 2024). In Line 14 we count the number of
solutions for the 1-DQBF instance after substituting y; with
the new Skolem function f. Finally, in Line 16 we update the
formula A by conjoining it with the conjunction in Eq. (3).

6 Experiments

We implemented the algorithm from the previous section in
a tool called sharp2DQR. Formulas such as R, Gg, ¢,
S1 and S, are represented as BDDs using cudd (Somenzi
2009). This offers several advantages. For example, the for-
mula ¢y, can be computed using BDD-based reachabil-
ity as implemented in ABC’s reach command (Brayton
and Mishchenko 2010). The number of support/non-support
variables can also be computed easily by constructing the
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Figure 1: The two figures on the left shows the performance of the solvers on the PEC instances, the horizontal axis corresponds
to the running time (s), and the vertical axis to the number of solved instances. The figure on the right shows the performance
of the solvers on the 2-colorability instances, the horizontal axis corresponds to the number of bits of the graph in the instance,

and the vertical axis to the running time (s).

BDD for &3 and S; from — with existential quantification.

To evaluate our model counter, we generated a diverse
family of benchmarks which we divide into three batches
of instances.

* PEC_opt: These are instances with dependency set size
of 10 to 50. They are generated in a similar manner as
in (Fung et al. 2024). There are 370 instances in this
batch. One third of these have 0 non-support variables.

e PEC_small: These are instances generated from the IS-
CAS89 instances with dependency set size of 3 to 10
variables. There are 192 instances in this batch.

* 2_colorability: These are the 2 colorability instances as
in (Fung et al. 2024). These are succinctly represented
graphs with 2 to 127 bits, each of them contains exactly
two Skolem functions.

For PEC_opt and PEC_small, the number of Skolem func-

tions ranges from 1 to more than 22" and the number of
connected components ranges from 1 to more than 1600.
We evaluated the performance of sharp2DQR against
ganak (Sharma et al. 2019), which is used to count the
number of models of the expansion as defined in Eq. (2).
The expansion is computed via cryptominisat5 (Soos,
Nohl, and Castelluccia 2009) or z3 (De Moura and Bjgrner
2008) as follows: First, we obtain a model M of —. Then, we
generate the corresponding clauses in the expansion. Then,
we add a blocking clause Ayez, Uz, Uy .y} 7# MT] to =
to prevent duplicated solutions and repeat until the formula
becomes unsatisfiable. This method is called Exp+ganak.
The experiments were conducted on Ubuntu 22.04.4 LTS
with 48 GB of 2400MHz DDR4 memory and an i5-13400
CPU. Each solver had 600 seconds to solve each instance.
Figure 1 shows that sharp2DQR fell short on PEC_small
instances, but it is significantly better than Exp+ganak
on PEC_opt instances. This is because the dependency set
size is larger on PEC_opt instances, and since the ex-
pansion size is exponential to the dependency set size,
our method, without expanding, performs better on larger
instances. Most of the time spent by Exp+ganak is
used on computing the expansion, and on many instances
ganak finishes counting quite quickly after the expansion.

sharp2DQR does not work well on small instances be-
cause sometimes BDD operations takes too long, and on
the PEC_small instances, the number of unsatisfying mod-
els is small enough that enumeration is not too much of a
problem. We also notice that for Exp+ganak, the perfor-
mance of using cryptominisat5 and z3 is similar, but
cryptominisath5 is better on the PEC_opt instances.

For 2_colorability, Exp+ganak was unable to solve any
instances larger than 12 bits, while sharp2DQR success-
fully solved instances up to 127 bits. This is due to the fact
that the number of clauses in the expansion is ©(2") for an
n-bit graph, making full expansion very expensive.

More experimental results and analysis can be found
in the supplementary material. We also compared both
Exp+ganak and sharp2DQR against the latest FOMC
tool WFOMC (Wang 2025), where we encode counting the
number of 2-coloring and independent sets on some specific
graphs. In all instances, WEOMC can only handle model sizes
of up to 4, far lower than what sharp2DQR can handle,
which in some instances is 2127. However, in the indepen-
dent set counting instances, Exp+ganak performs better
than sharp2DQR.

7 Concluding Remarks

We established that #2-DQBF is as hard as general
#DQBF. Specifically, we proved that it is #EXP-complete
by leveraging the connections between k-DQBF and k-
SAT (Fung and Tan 2023) and the technique in (Bannach
et al. 2025).

On the experimental front, we introduced a novel algo-
rithm for #2-DQBF using BDD-based symbolic reachabil-
ity. As a baseline, we also implemented an approach that re-
lies on universal expansion followed by propositional model
counting. While our algorithm scaled better with larger de-
pendency sets, the expansion-based method works for gen-
eral DQBF and may be worth exploring further.

To the best of our knowledge, this is the first paper in-
vestigating model counting for DQBF, and there are many
avenues for future research. One natural next step is to gen-
eralize our algorithm to handle 3-DQBF.
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More detailed proofs and experimental statistics
“Model Counting for Dependency Quantified Boolean Formulas™

In this supplementary material all logarithms have base 2.

A Parsimonious reduction from general DQBF to uniform DQBF

Recall that a k-DQBF @ is uniform, if for every Skolem functions (f1,..., fx) | ®, all the functions f1,..., fx must be the
same function. Here we will show the polynomial time parsimonious reduction from general DQBF to uniform DQBF. The
intuition is that we can combine k functions fi, ..., fx into one function f. Suppose f; : B™ — B, foreach 1 < i < k. We
can combine it into one function f : B°8* x B™ — B, where n is the maximal among 71, . .., ny. The first log k bits can be
used as the index of the function.

We now give the formal construction. We fix an arbitrary k-DQBF:
U = V& Hyl(zl) s Hyk(fk) P

where z = (z1,...,x,), each z; C Z.
We construct the following uniform k-DQBF:

U =Vzy,..., VT, Vi, . .., Vig, Iy (T, Uiy), ..., Jyk(Z, U dg). ¥,
where each Z; is a copy of Z, each @; is of [log k] bits encoding a number in [2/°8*1], and 1’ is the conjunction of the following:
c ((Bi=z;)N(w; =15)) = (ys > y;) forevery 1 < i < j <k,
* (7
A (/\’Le[k] 'ELI == 7/) — w, al‘ld
o (4; = j) — y; forevery i € [k]and k + 1 < j < 2[los k],

o= Tals) A (I = 2 = §)) = (31 & y) forevery i € [K],

The first item ensures that the DQBF is uniform. The second ensures that the dependencies of the original existential variables
are respected. The third encodes the original formula. The last enforces that there is a unique Skolem function for the unused
indices in order to preserve the number of Skolem functions.

For every Skolem function (f1, ..., fx), consider the function:
. [ filzlz) ifi<k
16.2) = {1 otherwise

which forms a Skolem function for ¥’ by copying itself & times. For any Skolem function of W¥’, it must be k copies of a
function f. Consider the function:

fi(zi) = f(i,Ext(z;, 7))

where Ext(Zz;, Z) lifts Z; to T by substituting the variables not in Z; to 0. Then (f1, .. ., fx) is a Skolem function for W. It is clear
that this is a bijection.

B Proof of Lemma 5: An explicit reduction from #DQBF to #2-DQBF
In this section we present the proof of Lemma 5:

There is a reduction that transforms a DOBF WV to two 2-DQBF ®1 and ®s such that #V = #®, — #®s. The reduction
runs in time O(k?[1)|), where k is the number of existential variables in W and 1 is the matrix of W.

We will first briefly review the reduction in (Bannach et al. 2025). For the sake of presentation, we will present only the
simplified version, which is already sufficient for our purpose. It should also be clear from our presentation that the reduction
is indeed projection as required in the proof of Lemma 4. We then show how to lift the reduction to the DQBF setting. We
will first show the reduction to a slightly generalized version of 2-DQBF that we call extended 2-DQBF. Then, we present a
parsimonious reduction from extended 2-DQBF to 2-DQBF.



The reduction from #SAT to #2-SAT:

Given a CNF ¢ over the variables T = (x1,...,%p):

p:= [\ C;, whereeachC; =/{; 1V - -V,

=

=1

We construct a 2-CNF forula ¢ over the variables Z U {c1,. .., ¢} U {p;, 0l;,02;, el;,€2;};=0.... m. The intended meaning of
each variable is as follows.

¢ Variable ¢; is the indicator whether clause C; is falsified: It is true only if clause C; is falsified.
* Variable p; denotes the parity of the number of clauses falsified up to clause 3.

e Variables ol;, 02;, el;, and e2; are used to represent different cases of the parity of the number of clauses falsified up to
clause <.

The formula ¢ is constructed to reflect the intended meaning of the variables. Formally, it is the conjunction of the following
clauses:

(R1) Foreachi =1,...,m, and every literal ¢; ;, we have the clause:
Cc; — ﬁgi’j (4)

That is, if clause C; is falsified, then all its literals must be falsified.
(R2) Foreachi =1,...,m, we have the following four groups of clauses:

* The number of clauses falsified up to clause ¢ is odd because clause ¢ is falsified.

ol; = —pi—1 ol; = ¢; ol; = p; 5)
* The number of clauses falsified up to clause ¢ is odd because clause ¢ is not falsified.

02; — pi—1 02; = —¢; 02; = p; (6)
* The number of clauses falsified up to clause ¢ is even because clause ¢ is falsified.

el; = pi1 el; = ¢ el; — —p; (N
* The number of clauses falsified up to clause 7 is even because clause ¢ is not falsified.

€2; — pi—1 €2; — ¢ €2; — —p; 3

(R3) Finally we have the clause:
o 9)
Intuitively, this means that initially there is zero clause falsified.
In (Bannach et al. 2025), it is shown that:

#(0) = #(DNpm) — #(P A Pm)

The proof is essentially the inclusion-exclusion principle, where we count the number of falsifying assignments.

The reduction from #DQBF to #2-DQBF:
We will show how to reduce DQBF to extended 2-DQBF defined as follows.

Definition 12. A DQBF is an extended 2-DQBF if its matrix is a conjunction |\, ;, where each y; uses at most two existential
variables.

In the following we will show the desired reduction from DQBF to extended 2-DQBF which suffices for our purpose thanks
to the following lemma.

Lemma 13. There is a parsimonious polynomial time reduction that transforms extended 2-DQBF instances to 2-DQBF in-
stances.

Proof. The proof is rather similar to Appendix A, where we combine several functions into one function.
Let the given extended 2-DQBF be:

VZ3y1(z1) ... Jyk(Zk) ¢, where ¢ := /\ o(Z, i, §5)-
1<i<j<m



Consider the 2-DQBF: o _ _
VIvVE' ViV Jy(z, 1)y (7,7
where

V= NG="=krzm=5)—y=y) A 2TV N ((=kAT =0 ordve/v,ve/¥])
k=1 1<k<f<m

Intuitively, the function y represents 35 when i = k. When i = i’ = k and k is between 1 and m, the formula (i = i’ =

k Az, = z,) = y =y forces y and ' to be the same function, and is independent of variables outside zj. Since each ¢y, ¢

only contains two existential variables, vy, and yp, (¢ = k A7’ = £) — ©k.e[yx/Y, ye/y’] ensures that y;, and y, represented by
y satisfies the ¢y , when Z = 7'

O

We now give the reduction as required in Lemma 5. Let the input k-DQBF be:
b :=Vay -z, Iy (Z1) - Yk (Zr) @

Let A = {0,1}" x {0,1}* and A* = AU{—1}. We will view elements in A as integers between 0 and 2" "* — 1 (inclusive), and
elements in A* as integers between —1 and 2"+ — 1 (inclusive). By encoding —1 with an additional bit and abuse of notation,
we may treat A* as a subset of B +F+1,

Consider the following DQBF:

U :=V(z,y) e AVE € A* VI’ € A* 3f1(z1) - Ife(Zk) Te(@,g) Ip(t') Jol(t) Fo2(f) Jel(t) Je2(t) v
where |Z| = n, |§| =k, |[{| = |t'| = n+ k + 1 and the matrix v is the conjunction of the following
(S
e == (y; = (c— f;)) foreachi € {1,...,k}
o = (—y; = (¢ — —f;)) foreach s € {1,...,k}
* p— e
(S2)

(t#—-1At'=t—1)— (ol = —p)
(t#-1At=(Z,7)) = (ol = ¢)
s (t#—-1At'=t) = (o1l = p)

(t#£-1At'=t—1)—> (02 = D)
s (t#£—-1At=(Z,7)) — (02 = —¢)
s (t#—-1At'=t) = (02— p)

(t£-1At'=t—1)—> (el = p)
s (t#—-1At=(z,79)) — (el = ¢)
(t#£-1At' =1t)— (el = —p)

s (t#£—-1At'=t—1) = (e2 = —p)
s (t#—-1At=(Z,7)) — (e2 = —¢)
s (t#£—-1At =1t)— (e2— —p)
(S3)
s (t'=-1)—=-p
The formulas in (S1) correspond to the clauses in (R1), (S2) to the clauses in (R2) and (S3) to the clause in (R3).
Consider the following two 2-DQBF ¥ and ¥s,.
* U, is obtained from W by conjuncting its matrix with (#' = 273 — 1) — —p.
* U, is obtained from ¥ by conjuncting its matrix with (#' = 2"+3 — 1) — p.
It can be shown that:
#P = #V, — #Vs.
The proof is similar to (Bannach et al. 2025). We observe that the expansion of U; and W, are essentially the same as in the
previous subsection. Note also that both W; and W4 are extended 2-DQBF.



C Missing details in the proof of Theorem 8

We first recall the reduction in Theorem 8. Suppose we are given a uniform 2-DQBF:
® = Va3y: (11)Fy2(12)9,

where & = (z1,...,2n), I = {i1,...,4m} and J = {Jj1, ..., jm}. We construct the following FO sentence ¥ using only one
predicate symbol S with arity m:
U = JugIui Yoy - Vo, (ug # ur) A
where 1 is the formula obtained from ¢ by replacing:
* each z; in ¢ with v; = uy forevery 1 <i <mn;
* y; and yo with S(v;,,...,v;, ) and S(vj,,...,v;,, ), resp.

The rest of this appendix is devoted to the proof that #® is half the number of models of ¥ with domain {1, 2}. To avoid being
repetitive, in this section, the domain of first-order structures is assumed to be {1, 2}.

We first show that swapping the roles of 1 and 2 in a structure does not effect the satisfiability of W. Suppose A = . Let
A* be the structure obtained by swapping the roles of 1 and 2 in A. We claim that A E VU iff A* | . Indeed, if A = ¥,
by definition, there is an assignment to g, u; with the elements in {1, 2}. Due to ug # w1, the assignments must be different.
Suppose ug is assigned with 1 and us is assigned with 2. Then, A* also satisfies ¥ by assigning uo with 2 and u, with 1. That
A* |= ¥ implies A |= ¥ is analogous.

Next, we show that a Boolean function f : B™ — B corresponds uniquely to two structures A; ; and Ay r. We use the

following notation. For each @ = (a1, . .., a,,) € B™, define a = (ay,...,d,) € {1,2}™, where foreachi € {1,...,m}:
~ 1 if a; = T
T2 ifa =1

For each function f : B™ — B, we define the structures .4, ; where for each a € B"":
f(a) =T ifandonlyif a € S

The structure A, ; is obtained by swapping the roles of 1 and 2 in .4, . It is routine to verify that (f, f) = @ iff both A; ; and
A, ¢ satisfy W. This implies that # & is half the number of models of V.

D Proof of Corollary 9
Recall Corollary 9:

There is a fragment L of FO of which the satisfiability problem is in PSPACE, but its corresponding FOMC is #EXP-
complete even when the domain size is restricted to 2.

The desired logic £ is a subclass of Bernays-Schoenfinkel-Ramsey class with relation symbol S (with varying arity) and
arbitrary number of unary relation symbols. It contains sentences of the form:

U = Juy - JupVor - - - Vo, ¢ (10)

where the number of atoms using the relation S is limited to 2. This class already captures the sentence used in the proof of
hardness (where the equality predicate uy # w; is replaced with U(u1) A =U(ug)). Therefore its model counting is #EXP-
complete. What is left is to show that this logic is decidable in polynomial space.

Let the input sentence be ¥ as in Eq. (10). We will use the well known fact that if U is satisfiable, then it is satisfiable
by a model of size at most k (Borger, Griadel, and Gurevich 1997). Let Uy, ..., U; be the unary predicates used in W. Let
the two atoms using the relation symbol S be S(v;, , ..., v;,,) and S(vj,,...,v;,, ). The (non-deterministic) polynomial space
algorithm for deciding the satisfiability of ¥ works as follows.

1. Guess the size of the model s between 1 and k.

The domain of the model is assumed to be a subset of B°% .
2. Foreachi € {1,...,k}, guess the element a; to be assigned to u;.
Foreach i € {1,...,t}, guess the unary predicate U; := {b; 1,...,b;p, }-
4. Construct the following uniform 2-DQBF:

et

(P = Vicl B 'V{fnﬂyl(.’fil, I 7.’fim)3y2({fjl, e 7jj7n)

((J_Jil,...,i‘im):(J_Tj“...,d_?jm)*)yl:y2> A\ /\ num(:fi)gsfl — d)
1<i<n

where:



*[Zi] = = [Tm| = 01| = - = || =logs.

* num(Z;) < s — 1is the formula stating that the number represented by Z;, w; are less than or equal to s — 1.
* ¢ is the formula obtained from v by performing the following.

— Replace each atom v; = uj with Z; = a;/.

Replace each atom v; = v;r with Z; = Z;/.

Replace each atom U, (u;) with T or L depending on whether a; is in the guessed set U;.

Replace each atom U; (v;) with the disjunction (Z; = b; 1) V -+ V (Z; = b; p, ).

— Replace each atom S(v;, , . .., v;, ) with y;.
- Replace each atom S(vj, , ..., v;,, ) with ya.
It is routine to verify that W is satisfiable if and only if there is a guess for the number s, the set {b;1,...,b;,, } for each

1 <4 < t and the element a; for each 1 < ¢ < k such that ® is satisfiable. Since ¢ is 2-DQBF whose satisfiability can be
checked in polynomial space (Fung and Tan 2023), the whole algorithm runs in polynomial space.

E Proof of Lemma 10
We recall Lemma 10:
Let 81 = {¢ : —p|z1/¢] is satisfiable} and Sy := {C : —p|z2/¢] is satisfiable}. The set of support variables in exp(P)
is{X1z:¢€ 81} U{Xa:: ¢ € Sa2}. Moreover, the number of support and non-support variables is |S1| + |Sa| and
(2171l — |8y |) + (2172 — |Sy|), respectively.
By definition, X ; is a support variable iff there is a clause C,, ; that contains it, which is equivalent to [(Z, 7)/(a,b)] = L
and ¢ = d’f L5 By definition, X ; is a support variable iff ¢ € S;. Similarly, X5 ; is a support variable iff ¢ € Sy. Thus, the

number of support variables is |S;| + |Sz2|. Since there are 221 number of variables X 1, and 2122| number of variables Xz,
the number of non-support variables is (2171 — |S|) + (217! — |Sy)).

F Proof of Lemma 11

Recall Lemma 11:

Let Y := Vu3y(v) ¢ be a satisfiable 1-DQBF.

s The number of Skolem functions for Y is 2™, where m = 2\°| — |{¢ : =¢[v/¢] is satisfiable}|.

* In particular, for a set S C BI?|, the number of Skolem functions for Y that differ on S is 2™, where m = |S| — |{c :

—[v/e] A (¢ € S) is satisfiable} .

It suffices to prove the first bullet. The second bullet follows immediately. By definition, exp(Y) is a 1-CNF formula con-
sisting of unit clauses. Since Y is satisfiable, exp(Y) is satisfiable as well, and the unit clauses determine a unique satisfying
assignment. This fixes the assignment of (support) variables in exp(Y'), which is the the set of variables X7 ; where —¢[0/¢]

is satisfiable. Since the non-support variables can be assigned arbitrarily and the total number of variables is 2!7!, the lemma
follows.

G Engineering Algorithms 1 and 2

This section contains some important details of our implementation of Algorithm 1.

Data structures. All important data structures such as R, G'¢, S1 and S are stored as BDD. The BDD encoding of G is
necessary since explicitly constructing the graph G is infeasible.

We construct a BDD for the formula ¢, that represents the transitive closure of G, i.e., - (u,v) = 1 iff u, v are both
support variables and there is a path from w to v in the graph G3. It can be obtained using BDD-based reachability, e.g., reach
command from ABC (Brayton and Mishchenko 2010), on the transition system (I, T"). Such BDD representation is useful in
listing the Skolem function candidates.

Note also that by Lemma 10, we could have used the formula ¢ to represent the set . However, this is not practical since
the set R has to be updated continuously (in Line 9 in Algorithm 1). For this reason, we also use a BDD to represent 2.

Due to the magnitude of the numbers /N and N, we use the sparse integer representation where we only store the exponent
in the binary representation. For example, the number 10100101 (in binary representation) is encoded as a list (0, 2,5, 7).

Computing the number of support/non-support variables. We construct the BDD for each &7 and Sy from —¢ with
existential abstraction, as defined in Lemma 10. Their cardinalities can be computed easily due to the BDD structure, e.g.,
Cudd_CountMinterm command from cudd package.

Picking an arbitrary variable X; : and the component C. To pick an arbitrary variable X; z, we pick a satisfying assign-
ment ¢ from the BDD R. The component C' is obtained by computing the closure of X; z in the implication graph. We remove
C from R by intersecting R with the negation of C'.



H Reduction from 2-DQBF to a symbolic reachability instance

In this section we briefly recall the reduction from 2-DQBF to a symbolic reachability instance as given in (Fung et al. 2024).
For more details, please refer to (Fung et al. 2024). Given a 2-DQBF ® := Vz3y;(21)3Jy2(22) ¢, the idea is to check if there
is a cycle that contains both a literal and its negation in the implication graph of exp(®). The formula - is the succinct

representation of the implication graph. For example, given two literals L = X flal and L' = ng&z, we can check if there is an
edge from Xi’}l to Xé’f[n by checking if = A Z; = a1 A Za = as A y1 = by A yo = —bs is satisfiable.

We construct the transition system over the states (b, L, Ly) where b € {0,1} and L, Ly are literals of exp(®). The initial
condition is b = 0 A L = Ly. The state (b, L, Lo) can transit to the state (b, L', Lo) if E(L, L") and the state (0, L, Ly) can
transit to the state (1, L, L) if L = —Lg. A state of the form (1, —Lg, Lg) is reachable from the initial state if and only if the
2-DQBF & is unsatisfiable.

I More experimental results
More experimental results on PEC

Figure 2 shows pairwise comparisons between sharp2DQR and Exp+ganak on the PEC instance. Each point represents an
instance. The axes in log scale represents the time needed for the corresponding solver. We can again see that for instances
in PEC_opt, most points lie on the top left portion, i.e., sharp2DOQR is better. However, for most instances in PEC_small, the
points lie on the bottom right portion, i.e., Exp+ganak is better.

, PEC small , PEC opt , PEC small , PEC opt
10 10 R 10 10 —
.o ° (] “ ot .
€ 102/ € 102/ o ™ 107 ™ 107 . :
5 5 7 g 8 A
10 1 10 x 10'4 x 104
® A © © i
c . c . N s
G 10 4 ® 10° © 100 ] ® 100 -
o i o 2 %al . 1 .
F 10 ST S| G g0 a2
% | g : R
* 10-2 | 102 e 102 102
101 101 103 101 10% 103 10-1  10° 103 10-1  10* 103
sharp2DQR sharp2DQR sharp2DQR sharp2DQR

Figure 2: Pairwise comparison between sharp2DQR and Exp+ganak.

By separating the time for computing the expansion and counting the number of solutions as in Figure 4 for the 2-colorability
instances, we notice that z3 performs better on these instances. Additionally, for z3, the time spent on expansion was similar
to the time used on counting the number of solutions with ganak, indicating that expansion is not the sole bottleneck.

2-colorability

Consider an n-bit graph with the edge circuit:

k
Crni(2,7') = /\ T =T N Tpy1 F Ty (11)
i=1
where Z = (z1,...,7,) and ' = (24,...,2}). The circuit represents a graph G, ; which is a union of 2* complete bipartite
graph and each component has size 2" %1,
We consider the DQBF:

TWO-COL,, , := VavzZ'Iy(2)Iy(Z). (2 =7") = (=) A (Enr — (v # )

When k = 0, these are the same instances as in (Fung et al. 2024). Each Skolem function of TWO-COL,, j, corresponds to a 2-
coloring of Gy, .. The number of Skolem functions for TWO-COL,, ;. is 2" Figure 3 shows the experimental results comparing
sharp2DQBR and Exp+ganak. For 2-colorability instances sharp2DQR can again solve for instances larger than 15 bits
while Exp+ganak can’t. When & is small (up to 3), sharp2DQR can even handle instances up to 127 bits. However, for large
k with n < 15, Exp+ganak outperforms sharp2DQR.



2-colorability over multiple components
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Figure 3: Performance of sharp2DQR and Exp+ganak on the counting the numbers of 2-colorings over G,, . The horizontal
axis represents the number of bits in the graph, i.e. n.

Expansion and count time
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Figure 4: Time used on expansion and counting for Exp+ganak on 2-colorability instances.

Independent set

We consider the DQBF formula:
IND-SET,, , := Vavz'3y(z)3y(z’). (z=2") = (y =y ) A (Crp = (my V —y))
The number of Skolem functions of IND-SET,, ;. is the number of (not necessarily maximal) independent set for G, j,, which
is (2x 22" )2t
Figure 5 shows the experimental results. sharp2DOR can only handle instances with n < 12 and n — k£ < 3, while
Exp+ganak with z3 can handle all instances with n < 12, and with cryptominisat, Exp+ganak can handle instances

up ton = 16. sharp2DQR performed worse in this set of instances because it has to do a lot of enumeration since every subset
of an independent set is an independent set.

Encoding the 2-colorability and independent set instances with first order logic

We can encode both type of instances in first order logic with some labeling predicates. For example, for the graph F, i,
consider the following sentence over the signature {U1, ..., U,, C'} where all of the predicates are unary.

U, = VzIy (l-type(y) = 1-type(z) + 1 mod 2") A Vay B, — (C(z) # C(y))



Independent set
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Figure 5: Performance of sharp2DQR and Exp+ganak on the counting the numbers of independent sets over G, ;. The
horizontal axis represents the number of bits in the graph, i.e. n.

where 1-type(y) = 1-type(x) + 1 mod 2™ is the following formula:

N U@)n-Uw) | v \ [-U@AtmA N\ U@ a-UmA N Ui =Uy)

1<i<n 1<i<n 1<j<i—1 i+1<j<n

Intuitively, 1-type(x) is a maximal consistent subset of {U;(z), -Ui(x),...,U,(x), Uy (z)} and 1-type(y) is a maximal
consistent subset of {U1(y), 7U1(y), ..., Un(y), "Un(y)}. We use 1-type to represent a number between 0 and 2™ — 1, where
U,;(x) and U;(y) represent the i-th bit (of x and y). The atom C(x) and C(y) represent the color of the element x and y. The

intention of the sentence Vx3y (l—type(y) = I-type(z) + 1 mod 2”) is to ensure all numbers between 0 and 2™ — 1 exists.

The formula En,k encodes the edge relation where we replace x; with U;(x) and x} with U;(y) in E,, . The sentence

VaVy E, x — (C(x) # C(y)) states that no two adjacent elements have the same color.

Note that the number of models of ¥, ;, with size 2" is the number of Skolem functions of TWO-COL,, j, multipled by (2™)!,
due to the labeling of the elements in the models of W, ;.. In our experiment, we tried counting the number of models of the
resulting formula with wfomc (Wang 2025), where we set the domain size to 2. However, it can only solve instances with
domain size up to 4.



